Termorregulación y tasas metabólicas de murciélagos nectarívoros del género Anoura (Chiroptera:Phyllostomidae) en una selva nublada de Los Andes venezolanos
DOI:
https://doi.org/10.53157/ecotropicos.682a-rbtcPalabras clave:
normotermia, alta montaña, adaptaciones fisiológicasResumen
En los murciélagos neotropicales, los límites de distribución altitudinal parecen asociarse a factores ambientales que afectan distintamente a los diferentes grupos funcionales. Para determinar si la termorregulación y/o las tasas metabólicas explican las restricción de las especies nectarívoras del género Anoura a los ambientes de montaña (500-3000 msnm), medimos temperatura corporal (Tc), tasa metabólica basal (TMB) y conductancia térmica (C) de A. cultrata, A. geoffroyi y A. latidens, en un intervalo de temperaturas ambiente (Ta) entre 10 y 38 ºC. Las tres especies mostraron termorregulación normotérmica, manteniendo su Tc constante (33-35 ºC) aún a bajas temperaturas. Ninguna especie entró en torpor, en concordancia con sus altas TMB (103-131%, de lo esperado para su masa corporal). Observamos una disminución de sus temperaturas críticas inferiores (Tci). La conductancia térmica en las tres especies fue menor a lo esperado para mamíferos (90-98%). Estas especies no mostraron diferencias en TMB y C con respecto a las especies de bajas elevaciones. En las tres especies el costo metabólico estimado a la temperatura del refugio, excedió la TMB entre 2,5 y 2,9 veces, valores similares al límite fisiológico predicho (2,5 x TMB). Las especies de montaña pueden mantener mayores diferenciales de temperatura al desplazar su zona de termoneutralidad, disminuyendo así el alto costo de la termorregulación. El comportamiento gregario en forma de harems observado dentro del refugio, pudiera permitirles disminuir su conductancia y mantener un mejor balance térmico.
Descargas
Referencias
Arends A, Bonaccorso F, & Genoud M. 1995. Basal rates of metabolism of nectarivorous bats (Phyllostomidae) from a semiarid thorn forest in Venezuela. Journal of Mammalogy 76(3):947– 956. https://doi.org/https://doi.org/10.2307/1382765.
Arita H & Santos-del-Prado K. 1990. Conservation biology of nectar-feeding bats in Mexico. Journal of Mammalogy 80(1):31–41. https://doi.org/https://doi.org/10.2307/1383205.
Ashton K, Tracy M, & De Queiroz A. 2000. Is bergmann’s rule valid for mammals? American Naturalist 156(4):390–415. https://doi.org/https://doi.org/10.1086/303400.
Ataroff M & Sarmiento L. 2004. Las Unidades Ecológicas de los Andes de Venezuela. In: La Marca E & Soriano P (Eds.) Reptiles de Los Andes de Venezuela, pp. 9–26. Fundación Polar, Codepre-ULA, Fundacite-Mérida, Biogeos, Mérida. http://www.saber.ula.ve/handle/123456789/37773.
Audet D & Fenton B. 1988. Heterothermy and the use of torpor by the bat Eptesicus fuscus (Chiroptera: Vespertilionidae): a field study. Physiological Zoology 61(3):197–204. https://doi.org/https://doi.org/10.1086/physzool.61.3.30161232.
Audet D & Thomas D. 1997. Facultative hypothermia as a thermoregulatory strategy in the phyllostomid bats, Carollia perspicillata and Sturnira lilium. Journal of Comparative Physiology B 167:146–152. https://doi.org/https://doi.org/10.1007/s003600050058
Baker R, Hoofer S, Porter C, & Van Der Bussche R. 2003. Diversification among new world leaf-nosed bats: an evolutionary hypothesis and classification inferred from digenomic congruence of dna sequence. Occasional Paper- The Museum, Texas Tech University 230:1–32. https://doi.org/10.5962/bhl.title.156931.
Bartels W, Law BS, & Geiser F. 1998. Daily torpor and energetics in a tropical mammal, the northern blossom-bat Macroglossus minimus (Megachiroptera). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 168(3):233–239. https://doi.org/10.1007/s003600050141.
Bartholomew GA, Leitner P, & Nelson JE. 1964. Body temperature, oxygen consumption, and heart rate in three species of Australian flying foxes. Physiological Zoology 37(2):179–198. https://doi.org/10.1086/physzool.37.2.30152330.
Bonaccorso FJ. 1998. Bats of Papua New Guinea. Conservation International Tropical Field Guide Series. Conservation International, Washington, D.C., 489 pp.
Bonaccorso FJ, Arends A, Genoud M, Cantoni D, & Morton T. 1992. Thermal ecology of moustached and ghost-faced bats (Mormoopidae) in venezuela. Journal of Mammalogy 73(2):365–378. https://doi.org/10.2307/1382071.
Bonaccorso FJ & McNab BK. 1997. Plasticity of energetics in blossom bats (Pteropodidae): impact on distribution. Journal of Mammalogy 78(4):1073–1088. https://doi.org/10.2307/1383050.
Canterbury G. 2002. Metabolic adaptation and climatic constrains on winter bird distribution. Ecology 83(4):946–957. https://doi.org/10.1890/0012-9658(2002)083[0946:MAACCO]2.0.CO;2.
Carpenter RE & Graham JB. 1967. Physiological responses to temperature in the long-nosed bat, Leptonycteris sanborni. Comparative Biochemistry and Physiology 22(3):709–722. https://doi.org/10.1016/0010-406X(67)90764-5.
Cockrum E. 1991. Seasonal distribution of northwestern populations of the long-nosed bats, Leptonycteris sanborni Family Phyllostomidae. Anales del Instituto de Biología, Universidad Nacional Autónoma de México, Serie Zoológica 62(2):181–202. https://www.revistas.unam.mx/index.php/zoo/article/view/7049/6557
Cruz-Neto A & Abe A. 1997. Taxa metabólica e termorregulaçâo no morcego nectarívoro, Glossophaga soricina (Chiroptera, Phyllostomidae). Revista Brasileira de Biología. Revista Brasileira de Biología 57(2):203–209. https://biblat.unam.mx/es/revista/revista-brasileira-de-biologia/15.
Depocas F & Hart JS. 1957. Use of the pauling oxygen analyzer for measurement of oxygen consumption of animals in open-circuit systems and in a short-lag, closed-circuit apparatus. Journal of Applied Physiology 10(3):388–392. https://doi.org/10.1152/jappl.1957.10.3.388.
Díaz M, Solari S, Gregorin R, Aguirre L, & Bárquez R. 2021. Clave de identificación de los Murciélagos Neotropicales. Fundación Programa de Conservación de los Murciélagos de Argentina (PCMA), Tucumán, Argentina. https://ri.conicet.gov.ar/handle/11336/156765.
Fleming T. 1986. The structure of neotropical bat communities: a preliminary analysis. Revista Chilena de Historia Natural 59:135–150. https://rchn.biologiachile.cl/pdfs/1986/2/Fleming_1986.pdf.
Fleming T. 2002. Pollination biology of four species of sonoran desert columnar cacti. In: Fleming T & Valiente-Banuet A (Eds.) Columnar cacti and their mutualists. Evolution, ecology, and conservation, pp. 207–224. The University of Arizona Press, Tucson.USA. https://doi.org/10.2307/j.ctv23khmrw.15.
Fleming T & Nassar J. 2002. Population biology of the lesser long-nosed bat Leptonycteris curasoae in Mexico and Northern South America. In: Fleming T & Valiente-Banuet A (Eds.) Columnar cacti and their mutualists. Evolution, ecology, and conservation, pp. 283–305. The University of Arizona Press, Tucson. USA. https://doi.org/10.2307/j.ctv23khmrw.19.
Fleming T, Núñez R, & Sternberg L. 1993. Seasonal changes in diets of migrant and non-migrant nectarivorous bats as revealed by carbon stable isotope analysis. Oecologia (Berlín) 94:72–75. https://doi.org/https://doi.org/10.1007/BF00317304.
Galindo-Galindo C, Castro-Campillo A, Salame-Méndez A, & Ramírez-Pulido J. 2000. Reproductive events and social organization in a colony of Anoura geoffroyi (Chiroptera: Phyllostomidae) from a temperate mexican cave. Acta Zoológica Mexicana (N.S.)(80):51–68. https://doi.org/10.21829/azm.2000.80801891.
Garin I, Chaverri G, Jimenez L, Castillo-Salazar C, & Aihartza J. 2018. Contrasting thermal strategies of montane neotropical bats at high elevations. Journal of thermal biology 78:352–355. https://doi.org/https://doi.org/10.1016/j.jtherbio.2018.10.017.
Geiser F, Coburn DK, Kourtner G, & Law BS. 1996. Thermoregulation, energy metabolism, and torpor in blossom‐bats, Syconycteris australis (Megachiroptera). Journal of Zoology 239(3):583–590. https://doi.org/10.1111/j.1469-7998.1996.tb05944.x.
Geiser F, Holloway JC, Körtner G, Maddocks TA, Turbill C, & Brigham RM. 2000. Do patterns of torpor differ between free-ranging and captive mammals and birds? In: Heldmaier G & Klingenspor M (Eds.) Life in the cold: eleventh international hibernation symposium, pp. 95–102. Springer. https://doi.org/https://doi.org/10.1111/j.1469-7998.1996.tb05944.x.
Genoud M. 1993. Temperature regulation in subtropical tree bats. Comparative Biochemistry and Physiology Part A: Physiology 104(2):321–331. https://doi.org/10.1016/0300-9629(93)90324-W.
Handley C. 1984. New species of mammals from northern South America: a long-tongued bat, genus Anoura Gray. Proceedings of the Biological Society of Washington 97:513–521. https://www.biodiversitylibrary.org/part/46176.
Herreid CF & Kessel B. 1967. Thermal conductance in birds and mammals. Comparative Biochemistry and Physiology 21(2):405–414. https://doi.org/10.1016/0010-406X(67)90802-X.
Howell D. 1974a. Bats and pollen: Physiological aspects of the syndrome of chiropterophily. Comparative Biochemistry and Physiology Part A: Physiology 48(2):263–276. https://doi.org/10.1016/0300-9629(74)90707-5.
Howell DJ. 1974b. Acoustic behavior and feeding in glossophagine bats. Journal of Mammalogy 55(2):293–308. https://doi.org/10.2307/1378999.
Humphrey SR & Bonaccorso FJ. 1979. Population and community ecology. In: Baker RJ, Jones JK, & Carter DC (Eds.) Biology of bats of the New World family Phyllostomidae, pp. 409–441. Texas Tech Press. https://www.biodiversitylibrary.org/bibliography/142603.
Koopman KF. 1981. The distributional patterns of new world nectar-feeding bats. Annals of the Missouri Botanical Garden 68(2):352. https://doi.org/10.2307/2398802.
Kovtun MF & Zhukova NF. 1994. Feeding and digestion intensity in chiropterans of different trophic groups. Folia Zoologica 43(4):377–386.
Kulzer E & Storff R. 1980. Schlaf-Lethargie bei dem afrikanischen Langzungenflughund Megaloglossus woermanni Pagenstecher, 1885. Zeitschrift für Säugetierkunde 45:23–29. https://www.zobodat.at/pdf/Zeitschrift-Saeugetierkunde_45_0023-0029.pdf.
Kurta A. 1985. External insulation available to a non-nesting mammal, the little brown bat (Myotis lucifugus. Comparative Biochemistry and Physiology Part A: Physiology 82(2):413–420. https://doi.org/10.1016/0300-9629(85)90876-X.
Kurta A & Kunz TH. 1988. Roosting metabolic rate and body temperature of male little brown bats (Myotis lucifugus) in summer. Journal of Mammalogy 69(3):645–651. https://doi.org/10.2307/1381365.
Lemke T & Tamsitt J. 1979. Anoura cultrata (Chiroptera: Phyllostomidae) from Colombia. Mammalia 43(4):567–583. https://doi.org/10.1515/mamm.1979.43.4.567.
Linares O. 1998. Mamíferos de Venezuela. Sociedad Conservacionista Audubon de Venezuela, Caracas., Venezuela.
Machado M & Soriano P. 2007. Temperature regulation in two insectivorous bats (Myotis keaysi and Myotis oxyotus) from the venezuelan andes. Ecotropicos 20(2):45–54. http://bdigital2.ula.ve:8080/xmlui/654321/7933.
McNab B. 1988. Complications inherent in scaling the basal rate of metabolism in mammals. The Quarterly Review of Biology 63(1):25–54. https://www.jstor.org/stable/2827977.
McNab B & Bonaccorso F. 2001. The metabolism of New Guinean pteropodid bats. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 171(3):201–214. https://doi.org/10.1007/s003600000163.
McNab BK. 1969. The economics of temperature regulation in neutropical bats. Comparative Biochemistry and Physiology 31(2):227–268. https://doi.org/10.1016/0010-406X(69)91651-X.
McNab BK. 1970. Body Weight and the Energetics of Temperature Regulation. Journal of Experimental Biology 53(2):329–348. https://doi.org/10.1242/jeb.53.2.329.
McNab BK. 1973. The rate of metabolism of the spiny rat, Proechimys semispinosis, with comments on the ecological factors that influence the basal rate of metabolism in rodents and lagomorphs. Boletim de Zoologia e Biologia Marinha 30:93–103. https://doi.org/10.11606/issn.2526-3366.bzbm.1973.121291.
McNab BK. 1974. The behavior of temperate cave bats in a subtropical environment. Ecology 55(5):943–958. https://doi.org/10.2307/1940347.
McNab BK. 1976. Seasonal fat reserves of bats in two tropical environments. Ecology 57(2):332–338. https://doi.org/10.2307/1934821.
McNab BK. 1980. On estimating thermal conductance in endotherms. Physiological Zoology 53(2):145–156. https://doi.org/10.1086/physzool.53.2.30152577.
McNab BK. 1982. Evolutionary alternatives in the physiological ecology of bats. In: Kunz TH (Ed.) Ecology of Bats, p. 151–200. Springer, Boston, MA. ISBN 9781461334217. https://doi.org/10.1007/978-1-4613-3421-7_4.
McNab BK. 1983. Energetics, body size, and the limits to endothermy. Journal of Zoology 199(1):1–29. https://doi.org/10.1111/j.1469-7998.1983.tb06114.x.
McNab BK. 1989. Temperature regulation and rate of metabolism in three bornean bats. Journal of Mammalogy 70(1):153–161.https://doi.org/https://doi.org/10.2307/1381678.
Molinari J. 1994. A new species of Anoura (Mammalia Chiroptera Phyllostomidae) from the Andes of northern South America. Tropical Zoology 7(1):73–86. https://doi.org/10.1080/03946975.1994.10539242.
Nickerson DM, Facey DE, & Grossman GD. 1989. Estimating Physiological Thresholds with Continuous Two-Phase Regression. Physiological Zoology 62(4):866–887. https://doi.org/10.1086/physzool.62.4.30157934.
Patterson BD, Pacheco V, & Solari S. 1996. Distribution of bats along an elevational gradient in the Andes of south‐eastern Peru. Journal of Zoology 240(4):637–658. https://doi.org/10.1111/j.1469-7998.1996.tb05313.x.
Pohl H. 1976. Thermal adaptation in the whole animal. In: Bligh J, Cloudsley-Thompson J, & Macdonald A (Eds.) Environmental Physiology of Animals, pp. 259–286. John Wiley and Sons, New York.
Ramirez-Pulido J, Galindo-Galindo C, Castro-Campillo A, Salame-Mendez A, & Armella MA. 2001. Colony size fluctuation of Anoura geoffroyi (Chiroptera: Phyllostomidae) and temperature characterization in a mexican cave. The Southwestern Naturalist 46(3):358. https://doi.org/10.2307/3672433.
Repasky RR. 1991. Temperature and the northern distributions of wintering birds. Ecology 72(6):2274–2285. https://doi.org/10.2307/1941577.
Rodríguez-Durán A. 1995. Metabolic rates and thermal conductance in four species of neotropical bats roosting in hot caves. Comparative Biochemistry and Physiology Part A: Physiology 110(4):347–355. https://doi.org/10.1016/0300-9629(94)00174-R.
Root T. 1988. Environmental factors associated with avian distributional boundaries. Journal of Biogeography 15(3):489. https://doi.org/10.2307/2845278.
Ruggiero A, Lawton JH, & Blackburn TM. 1998. The geographic ranges of mammalian species in South America: spatial patterns in environmental resistance and anisotropy. Journal of Biogeography 25(6):1093–1103. https://doi.org/10.1046/j.1365-2699.1998.00253.x.
Ruiz A & Soriano PJ. 2021. Adaptive strategies of frugivore bats to andean cloud forests. In: Myster RW (Ed.) The Andean Cloud Forest, p. 151–175. Springer International Publishing. https://doi.org/10.1007/978-3-030-57344-7_8.
Simmons N, Wilson D, & Reeder D. 2005. Order Chiroptera. In: Mammals Species of the World: A taxonomic and geographic reference, 3rd edition, pp. 312–529. Johns Hopkins University Press, Baltimore, Maryland. USA.
Soriano PJ, Díaz de Pascual A, Ochoa J, & Aguilera M. 1999. Biogeographic analysis of the mammal communities in the Venezuelan Andes. Interciencia 24(1):17–25.
Soriano PJ, Ruiz A, & Arends A. 2002. Physiological responses to ambient temperature manipulation by three species of bats from andean cloud forests. Journal of Mammalogy 83(2):445–457. https://doi.org/10.1644/1545-1542(2002)083<0445:PRTATM>2.0.CO;2.
Speakman JR, Webb PI, & Racey PA. 1991. Effects of disturbance on the energy expenditure of hibernating bats. The Journal of Applied Ecology 28(3):1087. https://doi.org/10.2307/2404227.
Stapp P, Pekins PJ, & Mautz WW. 1991. Winter energy expenditure and the distribution of southern flying squirrels. Canadian Journal of Zoology 69(10):2548–2555. https://doi.org/10.1139/z91-359.
Stevens G. 1992. The elevational gradient in altitudinal range: an extension of Rapoport’s latitudinal rule to altitude. The American Naturalist 140(6):893–911. http://www.jstor.org/stable/2462925.
Stevens R, Willig S, & Strauss R. 2006. Latitudinal gradients in the phenetic diversity of New World bat communities. Oikos 112(1):41–50. http://www.jstor.org/stable/3548556.
Stevens RD. 2004. Untangling latitudinal richness gradients at higher taxonomic levels: familial perspectives on the diversity of New World bat communities. Journal of Biogeography 31(4):665–674. https://doi.org/10.1111/j.1365-2699.2003.01042.x.
Terborgh J & Weske JS. 1975. The role of competition in the distribution of andean birds. Ecology 56(3):562–576. https://doi.org/10.2307/1935491.
von Helversen O. 1993. Adaptations of flowers to the pollination by glossophagine bats. In: Barthlott W, Naumann C, Schmidt-Loske K, & Schuchmann K (Eds.) Animal-Plant interactions in tropical environments, pp. 41–59. Zoologisches Forschungsmuseum Alexander Köening, Bonn, Germany.
von Helversen O. 2003. Glossophagine bats and their flowers: costs and benefits for plants and pollinators. In: Kunz T & Fenton M (Eds.) Bat ecology, pp. 346–397. The University of Chicago Press, Chicago, USA. https://press.uchicago.edu/ucp/books/book/chicago/B/bo3627946.html#anchor-table-of-contents
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Adriana Ruiz, Pascual J. Soriano, Marjorie Machado (Author)
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Cómo citar
Datos de los fondos
-
Cleveland Metroparks
-
Consejo de Desarrollo Científico, Humanístico, Tecnológico y de las Artes, Universidad de Los Andes Venezuela
Números de la subvención C-1097-01-01-ED -
American Society of Mammalogists
-
Fondo Nacional de Ciencia Tecnología e Innovación
-
Idea Wild
-
Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS)