Atributos foliares conservados y plasticidad fitoquímica en Polylepis sericea Wedd. (Rosaceae) en un gradiente altitudinal de Los Andes Venezolanos

Autores/as

  • Diego García Mora Universidad de La Rioja image/svg+xml Autor/a https://orcid.org/0000-0003-3624-013X
    • Data Curation
    • Formal Analysis
    • Investigation
    • Methodology
    • Software
    • Visualization
    • Writing – Original Draft Preparation
    • Writing – Review & Editing
  • Francisca Ely Universidad de Los Andes image/svg+xml Autor/a https://orcid.org/0000-0001-9567-7150
    • Conceptualization
    • Formal Analysis
    • Funding Acquisition
    • Methodology
    • Resources
    • Supervision
    • Validation
    • Writing – Original Draft Preparation
    • Writing – Review & Editing
  • Carmelo Rosquete Universidad de Los Andes image/svg+xml Autor/a
    • Writing – Review & Editing
    • Validation
    • Supervision
    • Resources
    • Methodology
    • Formal Analysis

DOI:

https://doi.org/10.53157/ecotropicos.n68r-7fp9

Palabras clave:

andes tropicales, atributos morfoanatómicos foliares, estrés UV, fenilpropanoides, flavonoides, polifenoles

Resumen

 Este estudio examinó la plasticidad anatómica foliar, basada en atributos estándar y la plasticidad fitoquímica, en términos de acumulación y composición de compuestos polifenólicos en \textit{Polylepis sericea} a lo largo de un gradiente altitudinal de 674 m (3.549–4.223 m s.n.m.) en los Andes venezolanos. Los análisis morfoanatómicos revelaron una estructura anatómica altamente conservada, dada la ausencia de variaciones significativas en el área foliar específica (SLA), grosor de la cutícula, altura de las células epidérmicas en general y en la proporción de clorénquima en empalizada/esponjoso. El perfil fitoquímico incluyó tinción férrica y espectrofotometría ultravioleta de los extractos foliares metanólicos. El estudio reveló la acumulación de agentes polifenólicos quelantes, principalmente flavonoides dihidroxilados y fenilpropanoides en el clorénquima, particularmente en las capas superiores. El contenido total de fenoles no incrementó linealmente, ya que la mayor concentración correspondió a la muestra recolectada a menor elevación (3.549 m s.n.m.). Sin embargo; las mayores concentraciones de flavonoides oxidados se observaron en el clorénquima de las muestras recolectadas a 4.223 m s.n.m. Estas diferencias, aunadas a la presencia de flavonoles glicosilados u oxidados en las muestras de 3.459 m s.n.m. sugieren que la síntesis y tipo de compuestos polifenólicos en P. sericea están influenciados por factores ambientales sitio-específico y que estos metabolitos secundarios desempeñan un papel clave en la mitigación del estrés fotooxidativo generado por condiciones ambientales extremas. La estructura foliar conservada asociada a la plasticidad fitoquímica hallada en este estudio podría ayudarnos a comprender las adaptaciones desarrolladas por plantas leñosas de alta montaña.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

  • Diego García Mora, Universidad de La Rioja

    Licenciado en Biología, Universidad de Los Andes (ULA), Mérida, Venezuela.  Estudiante de doctorado de Ciencias Biomédicas y Biotecnología en la Universidad de La Rioja, España.

  • Francisca Ely, Universidad de Los Andes

    Licenciada en Biología, MSc en Manejo de Bosques y PhD en Ecología Tropical, Universidad de Los Andes (ULA), Mérida Venezuela. Profesora Titular de Botánica y Directora General del Instituto Jardín Botánico de Mérida, Facultad de Ciencias, Universidad de Los Andes. 

  • Carmelo Rosquete, Universidad de Los Andes

    PhD en Química Orgánica, Universidad de salamanca. España, Profesor Titular del Departamento de Química de la Facultad de Ciencias, Universidad de Los Andes. Grupo de Productos Naturales. Especializado en estudios fitoquímicos relacionados al aislamiento y elucidación estructural de metabolitos secundarios de plantas andinas, incluyendo las de uso común en la terapéutica popular. 

Referencias

Agati G, Azzarello E, Pollastri S, & Tattini M. 2012. Flavonoids as antioxidants in plants: Location and functional significance. Plant Science 196:67–76. https://doi.org/10.1016/j.plantsci.2012.07.014.

Agati G, Brunetti C, Di Ferdinando M, Ferrini F, Pollastri S, & Tattini M. 2013. Functional roles of flavonoids in photoprotection: New evidence, lessons from the past. Plant Physiology & Biochemistry 72:35–45. https://doi.org/10.1016/j.plaphy.2013.03.014.

Agati G & Tattini M. 2010. Multiple functional roles of flavonoids in photoprotection. The New Phytologist 186(4):786–793. Apel K & Hirt H. 2004. Reactive oxygen species: metabolism, oxidative stress and signal transduction. Annual Review of Plant Biology 55:373–399. https://doi.org/10.1146/annurev.arplant.55.031903.141701.

Arnal H. 1983. Estudio Ecológico del Bosque alti-andino de Polylepis sericea Wedd. en la Cordillera de Mérida. Undergraduate thesis, Universidad Central de Venezuela, Caracas, Venezuela.

Arnal H, Sampson A, Navarro G, Palomino W, Ferreira W, Romoleroux K, Caro D, Teich I, Cuyckens E, Antezana C, Arrazola S, Aucca C, Balderrama J, Beck S, Burneo S, De la Barra N, Bustamante A, Fandinso Y, Ferro G, Gómez I, Guzmán G, Iglesias J, Irazabal J, Lozano P, Mercado M, Monsalve A, Renison D, Salgado S, & Samochuallpa E. 2014. Mapa Pan Andino de Bosques de Polylepis prioritarios para conservación. American Bird Conservancy, The Plains, USA.

Ataroff M & Sarmiento L. 2004. Las unidades ecológicas de los andes de venezuela. In: La Marca E & Soriano P (Eds.) Reptiles de Los Andes de Venezuela, pp. 9–26. Fundación Polar, Codepre-ULA, Fundacite-Mérida, Biogeos, Mérida, Venezuela.

Azócar A & Monasterio M. 1980. Estudio de la Variabilidad meso y micro climática en el Páramo de Mucubají, pp. 225–262. Editorial de la Universidad de Los Andes.

Azócar A & Rada F. 2006. Ecofisiología de plantas de páramo. ICAE. ULA. Centro Editorial Litorama, C.A., Mérida, Venezuela. ISBN 980-11-0990-4

Azócar A, Rada F, & García-Núñez C. 2007. Functional characteristics of the arborescent genus polylepis along a latitudinal gradient in the high andes. Interciencia 32:663–668.

Bertel C, Kaplenig D, Ralser M, Arc E, Kolár F, Wos G, Hülber K, Holzinger A, Kranner I, & Neuner G. 2022. Parallel differentiation and plastic adjustment of leaf anatomy in alpine arabidopsis arenosa ecotypes. Plants 11. https://doi.org/10.3390/ plants11192626.

Cabrol NA, Feister U, Häder DP, Piazena H, Grin EA, & Klein A. 2014. Record solar uv irradiance in the tropical andes. Frontiers in Environmental Science 2. https://doi.org/10.3389/fenvs.2014.00019.

Caceda C. 2012. Evaluación de la actividad antibacteriana ”in vitro” del extracto alcohólico de las hojas de polylepis rugulosa (”queilua”) frente a cultivos bacterianos uropatógenos aislados en el hospital hipólito unanue – tacna. Revista Ciencia & Desarrollo 14:51–58.

Carrasco-Ríos L. 2009. Efecto de la radiación ultravioleta-b en plantas. Idesia 27:59–76. https://doi.org/10.4067/S0718-34292009000300009.

Catalano S, Cioni PL, Martinozzi M, De Feo V, & Morelli I. 1995. Chemical investigation of polylepis incana (rosaceae). Biochemical Systematics and Ecology 23:105–107. https://doi.org/10.1016/0305-1978(95)93663-N.

Cesarino I, Eudes A, Urbanowicz B, & Xie M. 2022. Editorial: Phenylpropanoid systems biology and biotechnology. Frontiers in Plant Science 13:866164. https://doi.org/10.3389/fpls.2022.866164.

Chen Z, Dong Y, & Huang X. 2022. Plant responses to uv-b radiation: signaling, acclimation and stress tolerance. Stress Biology 2:51. https://doi.org/10.1007/s44154-022-00076-9.

Colmenares-Arteaga M, Rada F, & Luque R. 2005. Anatomía foliar de polylepis sericea wedd. (rosaceae) a dos altitudes en los altos andes venezolanos. PLANTULA 3:141–148.

de Rijke E, Out P, Niessen WM, Ariese F, Gooijer C, & Brinkman UA. 2006. Analytical separation and detection methods for flavonoids. Journal of Chromatography A 1112(1–2):31–63. https://doi.org/10.1016/j.chroma.2006.01.019.

Del Valle JC, Buide ML, Whittall JB, Valladares F, & Narbona E. 2020. Uv radiation increases phenolic compound protection but decreases reproduction in silene littorea. PLoS ONE 15:e0231611. https://doi.org/10.1371/journal.pone.0231611.

Delgado J. 2015. Flórula Vascular y Bryophyta sensu stricto de un Bosque de Polylepis sericea WEDD., Ubicado en la Sierra de la Culata, Estado Mérida. Undergraduate thesis, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela.

Delgado J & León-Vargas Y. 2017. Musgos (bryophyta) de bosques de polylepis sericea (rosaceae) del estado mérida (venezuela). Boletín de la Sociedad Argentina de Botánica 52:1851–2372.

Deng Y & Lu S. 2017. Biosynthesis and regulation of phenylpropanoids in plants. Critical Reviews in Plant Sciences 36:257–290. https://doi.org/10.1080/07352689.2017.1402852.

Ely F, Kiyota S, & Rada F. 2011. Freezing avoidance in tropical andean bamboos. Bamboo Science and Culture: The Journal of the American Bamboo Society 27:1–10.

Ely F & Torres F. 2003. Adaptaciones anatómico estructurales foliares de chaetolepis lindeniana (naud.) triana (melastomataceae), a lo largo de un gradiente altitudinal en el parque nacional sierra nevada de mérida (venezuela). PLANTULA 3:111–116.

Ely F, Torres F, & Gaviria JC. 2005. Relación entre los caracteres morfo-anatómicos foliares de tres especies del género miconia con su hábitat y distribución altitudinal en el parque nacional sierra nevada de mérida, venezuela. Acta Botánica Venezuélica 28:275–299.

Falcone Ferreyra ML, Rius SP, & Casati P. 2012. Flavonoids: biosynthesis, biological functions, and biotechnological applications. Frontiers in Plant Science 3:222. https://doi.org/10.3389/fpls.2012.00222.

Fini A, Brunetti C, Di Ferdinando M, Ferrini F, & Tattini M. 2011. Stress-induced flavonoid biosynthesis and the antioxidant machinery of plants. Plant Signaling & Behavior 6:709–711. https://doi.org/10.4161/psb.6.5.15069.

Gardiner B, Berry P, & Moulia B. 2017. Review: Wind impacts on plant growth, mechanics and damage. Plant Science 245:94–118. https://doi.org/10.1016/j.plantsci.2016.01.006.

Ghazghazi H, Miguel MG, Hasnaoui B, Sebei H, Figueiredo AC, Pedro LG, & Barroso JG. 2012. Leaf essential oil, leaf methanolic extract and rose hips carotenoids from rosa sempervirens l. growing in north of tunisia and their antioxidant activities. Journal of Medicinal Plants Research 6:574–579. https://doi.org/10.1016/j.plantsci.2016.01.006.

Goldstein G, Meinzer FC, & Rada F. 1994. Ecophysiology of polylepis sericea: a tropical treeline species. In: Rundel PW, Meinzer FC, & Smith AP (Eds.) Tropical Alpine Environments: Plant Form and Function. Cambridge University Press, Cambridge, UK.

Gutiérrez D, Ortiz C, & Cisneros A. 2008. Medición de fenoles y actividad antioxidante en malezas usadas para alimentación animal. In: Simposio de Metrología 2008. Santiago de Querétaro, México. SM2008-M220-1108-1.

He N, Liu C, Tian M, Li M, Yang H, Yu G, Guo D, Smith MD, Yu Q, & Hou J. 2017. Variation in leaf anatomical traits from tropical to cold-temperate forests and linkage to ecosystem functions. Functional Ecology 32:10–19. https://doi.org/10.1111/1365-2435.12934.

Hoceini-Bentaha M, Kadi-Bennane S, Boussoum MO, Nabti EH, Kadir N, Mestar-Guechaoui N, Ibrahim NA, Aleissa MS, Basher NS, Boudiaf M, Trabelsi L, & Houali K. 2025. Seasonal and edaphic modulation influences the phenolic contents and antioxidant activity in cork oak (quercus suber l.): Evidence from the algerian mediterranean forest. Forests 16:906. https://doi.org/10.3390/f16060906.

Hovenden MJ & Vander Schoor JK. 2005. The response of leaf morphology to irradiance depends on altitude of origin in nothofagus cunninghamii. New Phytologist 169:291–297. https://doi.org/10.1111/j.1469-8137.2005.01585.x.

Hu JP, Calomme M, Lasure A, De Broyne T, Pieters L, Vlietinck A, & Vanden Berghe DA. 1995. Structure-activity relationship of flavonoids with superoxide scavenging activity. Biological Trace Element Research 47:227–331.

Johansen DA. 1940. Plant Microtechnique. First edition. McGraw-Hill Book Company, Inc., New York and London. Third Impression.

Julkunen-Tiitto R. 1985. Phenolic constituents in the leaves of northern willows: methods for the analysis of certain phenolics. Journal of Agricultural and Food Chemistry 33(2):213–217. https://doi.org/10.1021jf00062a013.

Kennedy JA & Powell HKJ. 1985. Polyphenol interactions with aluminum (iii) and iron (iii): their possible involvement in the pod- zolization process. Australian Journal of Chemistry 38:879–888.

Kim JY, Hidalgo-Shrestha C, Bonawitz ND, Franke RB, & Chapple C. 2021. Spatio-temporal control of phenylpropanoid biosynthesis by inducible complementation of a cinnamate 4-hydroxylase mutant. Journal of Experimental Botany 72:3061–3073. https://doi.org/10.1093/jxb/erab055.

Kuster VC, Barbosa de Castro SA, & Vale FHA. 2016. Photosynthetic and anatomical responses of three plant species at two altitudinal levels in the neotropical savannah. Australian Journal of Botany 64:696–703. https://doi.org/10.1071/BT15280.

Körner C. 2007. The use of ‘altitude’ in ecological research. Trends in Ecology & Evolution 22:569–574. https://doi.org/10.1016/j.tree. 2007.09.006.

Lampasona M, Catalan C, Gedris T, & Herz W. 1998. Oleanolic and ursolic acid derivatives from polylepis australis. Phytochemistry 49:2061–2064.

León Y. 1991. Estudio de la vegetación vascular de tres bosques de Polylepis sericea Wedd. ubicados en la Sierra Nevada de Mérida. Undergraduate thesis, Universidad de Los Andes, Mérida, Venezuela.

Li X, Zhao X, Tsujii Y, Ma Y, Zhang R, Qian C, Wang Z, Geng F, & Jin S. 2022. Links between leaf anatomy and leaf mass per area of herbaceous species across slope aspects in an eastern tibetan subalpine meadow. Ecology & Evolution 12. https://doi.org/10.1002/ece3.8973.

Liu X, Tianyu S, Danyang L, Xue W, Weiyi M, Ruili W, & Shuoxin Z. 2021. Variation in woody leaf anatomical traits along the altitudinal gradient in taibai mountain, china. Global Ecology and Conservation 26:e01523. https://doi.org/10.1016/j.gecco.2021.e01523.

Liu X, Wang X, Zhu J, Wang X, Chen K, Yuan Y, Yang Y, Mo W, Wang R, & Zhang S. 2024. Strong conservatism in leaf anatomical traits and their multidimensional relationships with leaf economic traits in grasslands under different stressful environments. Ecological Processes 13:71. https://doi.org/10.1186/s13717-024-00548-y.

Luque R, Sousa HC, & Kraus JE. 1996. Métodos de coloração de roesser, modificado e kropp (1972) visando a substituição do azul de astra por azul de alcião 86s ou 86x. Acta Botanica Brasilica 10:199–212.

Ma J, Ji C, Han M, Zhang T, Yan X, Hu D, Zeng H, & He J. 2012. Comparative analyses of leaf anatomy of dicotyledonous species in tibetan and inner mongolian grasslands. Science China Life Sciences 55:68–79. https://doi.org/10.1007/s11427-012-4268-0.

Mabry TJ, Markham KR, & Thomas MB. 1970. The Systematic Identification of Flavonoids. Springer-Verlag, New York, USA, 35–40 pp. https://doi.org/10.1007/978-3-642-88458-0.

Mierziak J, Kostyn K, & Kulma A. 2014. Flavonoids as important molecules of plant interactions with the environment. Molecules 19:16240–16265. https://doi.org/10.3390/molecules191016240.

Misra D, Dutta W, Jha G, & Ray P. 2023. Interactions and regulatory functions of phenolics in soil-plant-climate nexus. Agronomy. 13:280. https://doi.org/10.3390/agronomy13020280.

Momberg M, Hedding DW, Luoto M, & le Roux PC. 2021. Exposing wind stress as a driver of fine-scale variation in plant communities.Journal of Ecology 109:2121–2136. https://doi.org/10.1111/1365-2745.13625.

Monasterio M & Reyes S. 1980. Diversidad ambiental y variación de la vegetación en los páramos de los andes venezolanos. In:

Monasterio M (Ed.) Estudios Ecológicos en los Páramos Andinos, pp. 47–91. Ediciones de la Universidad de los Andes, Mérida, Venezuela.

Morales LO, Tegelberg R, Brosche M, & Lindfors A. 2009. Effects of solar uva and uvb on gene expression and phenolic accumulation in betula pendula leaves. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 153:S222. https://doi.org/10.1016/j.cbpa.2009.04.4.

Mouradov A & Spangenberg G. 2014. Flavonoids: a metabolic network mediating plants adaptation to their real estate. Frontiers in Plant Science 5:620. https://doi.org/10.3389/fpls.2014.00620.

Możdżeń K, Tatoj A, Barabasz-Krasny B, Sołtys-Lelek A, Gruszka W, & Zandi P. 2021. The allelopathic potential of Rosa blanda Aiton on selected wild-growing native and cultivated plants in europe. Plants 10:1806. https://doi.org/10.3390/plants10091806.

Neto CC, Vaisberg AJ, Zhou B, Kingston DGI, & Hammond GB. 2000. Cytotoxic triterpene acids from the peruvian medicinal plant Polylepis racemosa. Planta Medica 66:483–484.

Pfennigwerth AA, Bailey JK, & Schweitzer JA. 2017. Trait variation along elevation gradients in a dominant woody shrub is population-specific and driven by plasticity. AoB PLANTS 9:plx027. https://doi.org/10.1093/aobpla/plx027.

R Core Team. 2024. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

Rada F, Azócar A, Briceño B, González J, & García-Núñez C. 1996. Carbon and water balance in Polylepis sericea, a tropical treeline species. Trees 10:218–222.

Rada F, García-Núñez C, & Rangel S. 2009. Low temperature resistance in saplings and ramets of Polylepis sericea in the Venezuelan Andes. Acta Oecologica 35:610–613.

Rada F, García-Núñez C, & Rangel S. 2011. Microclimate and regeneration patterns of Polylepis sericea in a treeline forest of the Venezuelan Andes. Ecotrópicos 24:113–122. https://doi.org/10.53157/ecotropicos.6n9f-1ka2

Rada F, Goldstein G, Azocar A, & Meinzer F. 1985. Daily and seasonal osmotic changes in a tropical treeline species. Journal of Experimental Botany 36:989–1000.

Salam U, Ullah S, Tang ZH, Elateeq AA, Khan Y, Khan J, Khan A, & Ali S. 2023. Plant metabolomics: An overview of the role of primary and secondary metabolites against different environmental stress factors. Life 13(3):706. https://doi.org/10.3390/life13030706.

Sarkar SK & Howarth RE. 1976. Specificity of the vanillin test for flavanols. Journal of Agriculture & Food Chemistry 24:317–320. https://doi.org/10.1021/jf60204a041.

Sarmiento G. 1986. Ecologically crucial features of climate in high tropical mountains. In: Vuilleumier F & Monasterio M (Eds.) High Altitude Tropical Biogeography, pp. 11–45. Oxford University Press, Oxford, UK.

Schneider CA, Rasband WS, & Eliceiri KW. 2012. Nih image to imagej: 25 years of image analysis. Nature Methods 9(7):671–675. https://doi.org/10.1038/nmeth.2089.

Simpson B. 1979. A revision of the Genus Polylepis (Rosaceae: Sanguisorbeae), volume 43 of Smithsonian Contributions to Botany. Smithsonian Institution Press, Washington DC, USA, 1–62 pp.

Soheili F, Heydaria M, Woodward S, Abdul-Hamid H, & Najia HR. 2023. Adaptive plasticity of morphological and anatomical traits of brant’s oak (Quercus brantii lindl.) leaves under different climates and elevation gradients. Forest Science and Technology 19:96–104. https://doi.org/10.1080/21580103.2023.2182369.

Spitaler R, Winkler A, Lins I, Yanar S, Stuppner H, & Zidorn C. 2008. Altitudinal variation of phenolic contents in flowering heads of Arnica montana cv. Arbo: a 3-year comparison. Phytochemistry 67:409–417. https://doi.org/10.1016/j.phytochem.2005.11.018.

Takahashi S & Badger MR. 2011. Photoprotection in plants: a new light on photosystem ii damage. Trends in Plant Sciences 16:53–60.https://doi.org/10.1016/j.tplants.2010.10.001.

Tattini M, Galardi C, Pinelli P, Massai R, Remorini D, & Agati G. 2004. Differential accumulation of flavonoids and hydroxycinnamates in leaves of ligustrum vulgare under excess light and drought stress. New Phytologist 163:547–561. https://doi.org/10.1111/j.1469-8137.2004.01126.x.

Thakur M, Bhattacharya S, Kumar PK, & Puri S. 2019. Improving production of plant secondary metabolites through biotic and abiotic elicitation. Journal of Applied Research on Medicinal and Aromatic Plants 12:1–12. https://doi.org/10.1016/j.jarmap.2018.11.004.

Tohge T, Watanabe M, Hoefgen R, & Fernie AR. 2013. The evolution of phenylpropanoid metabolism in the green lineage. Critical Reviews in Biochemistry and Molecular Biology 48(2):123–152. https://doi.org/10.3109/10409238.2012.758083.

Vélez V, Cavelier J, & Devia B. 1998. Ecological traits of the tropical treeline species Polylepis quadrijuga (rosaceae) in the Andes of Colombia. Journal of Tropical Ecology 14:771–787. https://doi.org/10.1017/S026646749800056X.

Wang G, Sun X, Li Y, Wang Y, & Jin C. 2025. The role of uv-b radiation in modulating secondary metabolite biosynthesis and regulatory mechanisms in medicinal plants. Bioresources 20:4776–4797. https://doi.org/10.15376/biores.20.2.wang.

Williams RJ, Spencer JPE, & Rice-Evans C. 2004. Flavonoids: Antioxidants or signaling molecules? In: Rice-Evans C (Ed.) Serial Reviews: Flavonoids and Isoflavonoids (Phytoestrogens): Absorption, Metabolism and Bioactivity, volume 36, pp. 838–849. Elsevier Inc. https://doi.org/10.1016/j.freeradbiomed.2004.01.001.

Yang J, Chong P, Chen G, Xian J, Liu Y, & Yue Y. 2022. Shifting plant leaf anatomical strategic spectra of 286 plants in the eastern Qinghai-tibet plateau: Changing gears along 1050–3070 m. Ecological Indicators 146:109741. https://doi.org/10.1016/j.ecolind.2022.109741.

Zhao Q, Wang Z, Wang G, Cao F, Yang X, Zhao H, & Zhai J. 2024. Effects of uva on flavonol accumulation in ginkgo biloba. Forests. 15(6):909. https://doi.org/10.3390/f15060909.

Descargas

Publicado

29-12-2025

Declaración de disponibilidad de datos

Data available at: https://doi.org/10.53157/ecotropicos.6vej-j65x

Número

Sección

Artículos de investigación

Cómo citar

Atributos foliares conservados y plasticidad fitoquímica en Polylepis sericea Wedd. (Rosaceae) en un gradiente altitudinal de Los Andes Venezolanos. (2025). Ecotropicos, 36. https://doi.org/10.53157/ecotropicos.n68r-7fp9

Artículos similares

1-10 de 76

También puede Iniciar una búsqueda de similitud avanzada para este artículo.