Descubriendo la biodiversidad de parásitos en los Trópicos: Un marco de referencia basado en modelos de nicho ecológico de múltiples especies hospedadoras.

Autores/as

DOI:

https://doi.org/10.53157/ecotropicos.33e0016

Palabras clave:

biotic interactions, ecological niche, host communities, parasite assemblages, vector-borne diseases

Resumen

Los actuales grados de amenaza hacia la biodiversidad impuestos por las actividades humanas resaltan la necesidad de concentrar esfuerzos no solo en conservar lo que ya conocemos, sino también en el descubrimiento de nuevas especies, particularmente de grupos poco estudiados pero ecológicamente importantes, como lo son los parásitos y la fauna subterránea. Para el caso de los parásitos, debemos considerar que sus hospedadores representan todo su hábitat, que la mayoría de las especies hospedadoras están infectadas por más de una especie de parásito y que muchos estudios demuestran que algunos rasgos del hospedador (p.ej. el tamaño del cuerpo, el rango de distribución) y la diversidad de hospedadores se correlacionan positivamente con la diversidad de parásitos. Por lo tanto, la diversidad de hospedadores puede ser un sustituto de la diversidad de parásitos, donde siempre esperaríamos una mayor riqueza de parásitos que de especies hospedantes. Por ello, proponemos un marco de referencia utilizando modelos de nicho ecológico de múltiples especies hospedadoras (es decir, uso de modelos de distribución de especies conjuntas de hospedadores) para guiar los futuros estudios de la diversidad de parásitos. Sugerimos enfocar estos estudios en áreas con alta riqueza y endemicidad de especies hospedadoras, para así optimizar el uso de los limitados recursos económicos en áreas con una mayor probabilidad de descubrimiento de parásitos (p.ej. puntos críticos de diversidad de hospedantes que propor- cionan mayor heterogeneidad del hábitat para los parásitos).

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Barve N, Barve V, Jiménez-Valverde A, Lira-Noriega A, Maher SP, Peterson AT, Soberón J & Villalobos F. 2011. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling 222: 1810-1819. https://doi.org/10.1016/j.ecolmodel.2011.02.011 DOI: https://doi.org/10.1016/j.ecolmodel.2011.02.011

Bordes F, Morand S, Krasnov BR & Poulin R. 2010. Para site diversity and latitudinal gradients in terrestrial mammals. In: Morand S & Krasnov B (Eds.) The biogeography of host-parasite interactions, Oxford University Press, New York, USA, pp. 89-98.

Brooks DR. 1985. Historical ecology: a new approach to studying the evolution of ecological associations. Annals of the Missouri Botanical Garden 72: 660-680. https://doi.org/10.2307/2399219 DOI: https://doi.org/10.2307/2399219

Brooks DR, McLennan DA & McLennan DA. 1991. Phylogeny, ecology, and behavior: a research program in comparative biology. University of Chicago press, Chicago, USA. https://doi.org/10.2307/1446122 DOI: https://doi.org/10.2307/1446122

Bush AO, Lafferty KD, Lotz JM & Shostak AW. 1997. Parasitology meets ecology on its own terms: Margolis et al. revisited. The Journal of parasitology 83: 575-583. https://doi.org/10.2307/3284227 DOI: https://doi.org/10.2307/3284227

Carlson CJ, Burgio KR, Dougherty ER, Phillips AJ, Bueno VM, Clements CF, Castaldo G, Dallas TA, Cizauskas CA, Cumming GS et al. 2017. Parasite biodiversity faces extinction and redistribution in a changing climate. Science Advances 3: e1602422. https://doi.org/10.1126/sciadv.1602422 DOI: https://doi.org/10.1126/sciadv.1602422

Carlson CJ, Dallas TA, Alexander LW, Phelan AL & Phillips AJ. 2020a. What would it take to describe the global diversity of parasites? Proceedings of the Royal Society B 287: 20201841. https://doi.org/10.1098/rspb.2020.1841 DOI: https://doi.org/10.1098/rspb.2020.1841

Carlson CJ, Hopkins S, Bell KC, Doña J, Godfrey SS, Kwak ML, Lafferty KD, Moir ML, Speer KA, Strona G et al. 2020b. A global parasite conservation plan. Biological Conservation 250: 108596. https://doi.org/10.1016/j.biocon.2020.108596 DOI: https://doi.org/10.1016/j.biocon.2020.108596

Cheviron Z, Hackett SJ & Capparella AP. 2005. Complex evolutionary history of a Neotropical lowland forest bird (Lepidothrix coronata) and its implications for historical hypotheses of the origin of Neotropical avian diversity. Molecular Phylogenetics and Evolution 36: 338-357. https://doi.org/10.1016/j.ympev.2005.01.015 DOI: https://doi.org/10.1016/j.ympev.2005.01.015

Clark NJ. 2018. Phylogenetic uniqueness, not latitude, explains the diversity of avian blood parasite communities worldwide. Global Ecology and Biogeography 27: 744-755. https://doi.org/10.1111/geb.12741 DOI: https://doi.org/10.1111/geb.12741

Clark NJ & Clegg SM. 2017. Integrating phylogenetic and ecological distances reveals new insights into parasite host specificity. Molecular Ecology 26: 3074-3086. https://doi.org/10.1111/mec.14101 DOI: https://doi.org/10.1111/mec.14101

Clark NJ, Clegg SM & Lima MR. 2014. A review of global diversity in avian haemosporidians (Plasmodium and Haemoproteus: Haemosporida): new insights from molecular data. International Journal for Parasitology 44: 329-338. https://doi.org/10.1016/j.ijpara.2014.01.004 DOI: https://doi.org/10.1016/j.ijpara.2014.01.004

Currie DJ, Mittelbach GG, Cornell HV, Field R, Guégan JF, Hawkins BA, Kaufman DM, Kerr JT, Oberdorff T, O'Brien E et al. 2004. Predictions and tests of climatebased hypotheses of broad-scale variation in taxonomic richness. Ecology letters 7: 1121-1134. https://doi.org/10.1111/j.1461-0248.2004.00671.x DOI: https://doi.org/10.1111/j.1461-0248.2004.00671.x

Dunn RR, Harris NC, Colwell RK, Koh LP & Sodhi NS. 2009. The sixth mass coextinction: are most endangered species parasites and mutualists? Proceedings of the Royal Society B: Biological Sciences 276: 3037-3045. https://doi.org/10.1098/rspb.2009.0413 DOI: https://doi.org/10.1098/rspb.2009.0413

Fecchio A, Bell JA, Bosholn M, Vaughan JA, Tkach VV, Lutz HL, Cueto VR, Gorosito CA, González-Acuña D, Stromlund C et al. 2020. An inverse latitudinal gradient in infection probability and phylogenetic diversity for Leucocytozoon blood parasites in New World birds. Journal of Animal Ecology 89: 423-435. https://doi.org/10.1111/1365-2656.13117 DOI: https://doi.org/10.1111/1365-2656.13117

Fecchio A, Pinheiro R, Felix G, Faria I, Pinho J, Lacorte G, Braga E, Farias I, Aleixo A, Tkach V et al. 2018. Host community similarity and geography shape the diversity and distribution of haemosporidian parasites in Amazonian birds. Ecography 41: 505-515. https://doi.org/10.1111/ecog.03058 DOI: https://doi.org/10.1111/ecog.03058

Fecchio A, Wells K, Bell JA, Tkach VV, Lutz HL, Weckstein JD, Clegg SM & Clark NJ. 2019. Climate variation influences host specificity in avian malaria parasites. Ecology letters 22: 547-557. https://doi.org/10.1111/ele.13215 DOI: https://doi.org/10.1111/ele.13215

Gómez A & Nichols E. 2013. Neglected wildlife: parasitic biodiversity as a conservation target. International Journal for Parasitology: Parasites and Wildlife 2: 222-227. https://doi.org/10.1016/j.ijppaw.2013.07.002 DOI: https://doi.org/10.1016/j.ijppaw.2013.07.002

Gutiérrez JS, Rakhimberdiev E, Piersma T & Thieltges DW. 2017. Migration and parasitism: habitat use, not migration distance, influences helminth species richness in Charadriiform birds. Journal of Biogeography 44: 1137-1147. https://doi.org/10.1111/jbi.12956 DOI: https://doi.org/10.1111/jbi.12956

Hatcher MJ & Dunn AM. 2011. Parasites in ecological communities: from interactions to ecosystems. Cambridge University Press, Cambridge, UK. https://doi.org/10.1017/CBO9780511987359 DOI: https://doi.org/10.1017/CBO9780511987359

Hawkins BA, Diniz-Filho JAF, Jaramillo CA & Soeller SA. 2006. Post-Eocene climate change, niche conservatism, and the latitudinal diversity gradient of New World birds. Journal of Biogeography 33: 770-780. https://doi.org/10.1111/j.1365-2699.2006.01452.x DOI: https://doi.org/10.1111/j.1365-2699.2006.01452.x

Hawkins BA, Diniz-Filho JAF, Jaramillo CA & Soeller SA. 2007. Climate, niche conservatism, and the global bird diversity gradient. The American Naturalist 170: S16-S27. https://doi.org/10.1086/519009 DOI: https://doi.org/10.1086/519009

Hawkins BA, Field R, Cornell HV, Currie DJ, Guégan JF, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O'Brien EM et al. 2003a. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84: 3105-3117. https://doi.org/10.1890/03-8006 DOI: https://doi.org/10.1890/03-8006

Hawkins BA, Porter EE & Felizola Diniz-Filho JA. 2003b. Productivity and history as predictors of the latitudinal diversity gradient of terrestrial birds. Ecology 84: 1608-1623. https://doi.org/10.1890/0012-9658(2003)084[1608:PAHAPO]2.0.CO;2 DOI: https://doi.org/10.1890/0012-9658(2003)084[1608:PAHAPO]2.0.CO;2

Hechinger RF & Lafferty KD. 2005. Host diversity begets parasite diversity: bird final hosts and trematodes in snail intermediate hosts. Proceedings of the Royal Society B: Biological Sciences 272: 1059-1066. https://doi.org/10.1098/rspb.2005.3070 DOI: https://doi.org/10.1098/rspb.2005.3070

Hoberg EP, Brooks DR, Siegel-Causey D et al. 1997. Hostparasite co-speciation: history, principles, and prospects. In: Clayton D & Moore J (Eds.) Host-Parasite Evolution: General Principles and Avian Models, Oxford University Press, Oxford, UK, pp. 212-235. https://doi.org/10.1093/oso/9780198548935.003.0011 DOI: https://doi.org/10.1093/oso/9780198548935.003.0011

Ilgūnas M, Chagas CRF, Bukauskaitė D, Bernotienė R, Iezhova T & Valkiūnas G. 2019. The life-cycle of the avian haemosporidian parasite Haemoproteus majoris, with emphasis on the exoerythrocytic and sporogonic development. Parasites & Vectors 12: 1-15. https://doi.org/10.1186/s13071-019-3773-4 DOI: https://doi.org/10.1186/s13071-019-3773-4

Ishtiaq F & Renner SC. 2020. Bird migration and vector-borne parasite transmission. In: Santiago-Alarcon D & Marzal A (Eds.) Avian malaria and related parasites in the tropics: Ecology, Evolution and Systematics, Springer International Publishing, Cham, Switzerland, pp. 513-526. https://doi.org/10.1007/978-3-030-51633-8_16 DOI: https://doi.org/10.1007/978-3-030-51633-8_16

Jetz W, Thomas GH, Joy JB, Hartmann K & Mooers AO. 2012. The global diversity of birds in space and time. Nature 491: 444-448. https://doi.org/10.1038/nature11631 DOI: https://doi.org/10.1038/nature11631

Johnson PT, Wood CL, Joseph MB, Preston DL, Haas SE & Springer YP. 2016. Habitat heterogeneity drives the hostdiversity-begets-parasite-diversity relationship: evidence from experimental and field studies. Ecology Letters 19: 752-761. https://doi.org/10.1111/ele.12609 DOI: https://doi.org/10.1111/ele.12609

Kattan GH & Franco P. 2004. Bird diversity along elevational gradients in the Andes of Colombia: area and mass effects. Global Ecology and Biogeography 13: 451-458. https://doi.org/10.1111/j.1466-822X.2004.00117.x DOI: https://doi.org/10.1111/j.1466-822X.2004.00117.x

Krasnov BR, Shenbrot GS, van der Mescht L, Warburton EM & Khokhlova IS. 2019. Phylogenetic and compositional diversity are governed by different rules: a study of fleas parasitic on small mammals in four biogeographic realms. Ecography 42: 1000-1011. https://doi.org/10.1111/ecog.04224 DOI: https://doi.org/10.1111/ecog.04224

Kwak ML, Heath AC & Cardoso P. 2020. Methods for the assessment and conservation of threatened animal parasites. Biological Conservation 248: 108696. https://doi.org/10.1016/j.biocon.2020.108696 DOI: https://doi.org/10.1016/j.biocon.2020.108696

Lafferty KD, Allesina S, Arim M, Briggs CJ, De Leo G, Dobson AP, Dunne JA, Johnson PT, Kuris AM, Marcogliese DJ et al. 2008. Parasites in food webs: the ultimate missing links. Ecology Letters 11: 533-546. https://doi.org/10.1111/j.1461-0248.2008.01174.x DOI: https://doi.org/10.1111/j.1461-0248.2008.01174.x

Leung TL & Koprivnikar J. 2016. Nematode parasite diversity in birds: the role of host ecology, life history and migration. Journal of Animal Ecology 85: 1471-1480. https://doi.org/10.1111/1365-2656.12581 DOI: https://doi.org/10.1111/1365-2656.12581

Lobo JM, Jiménez-Valverde A & Hortal J. 2010. The uncertain nature of absences and their importance in species distribution modelling. Ecography 33: 103-114. https://doi.org/10.1111/j.1600-0587.2009.06039.x DOI: https://doi.org/10.1111/j.1600-0587.2009.06039.x

Lovette I & Fitzpatrick J. 2011. Handbook of bird biology. Wiley-Blackwell. Chichester, West Sussex, UK.

Marcogliese DJ. 2005. Parasites of the superorganism: are they indicators of ecosystem health? International Journal for Parasitology 35: 705-716. https://doi.org/10.1016/j.ijpara.2005.01.015 DOI: https://doi.org/10.1016/j.ijpara.2005.01.015

Maxwell SL, Fuller RA, Brooks TM & Watson JE. 2016. Biodiversity: The ravages of guns, nets and bulldozers. Nature News 536: 143. https://doi.org/10.1038/536143a DOI: https://doi.org/10.1038/536143a

McQuaid C & Britton N. 2013. Host-parasite nestedness: a result of co-evolving trait-values. Ecological Complexity 13: 53-59. https://doi.org/10.1016/j.ecocom.2013.01.001 DOI: https://doi.org/10.1016/j.ecocom.2013.01.001

Mittelbach GG, Schemske DW, Cornell HV, Allen AP, Brown JM, Bush MB, Harrison SP, Hurlbert AH, Knowlton N, Lessios HA et al. 2007. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecology Letters 10: 315-331. https://doi.org/10.1111/j.1461-0248.2007.01020.x DOI: https://doi.org/10.1111/j.1461-0248.2007.01020.x

Ovaskainen O & Abrego N. 2020. Joint species distribution modelling: with applications in R. Cambridge University Press, Cambridge, UK. https://doi.org/10.1017/9781108591720 DOI: https://doi.org/10.1017/9781108591720

Owens HL, Campbell LP, Dornak LL, Saupe EE, Barve N, Soberón J, Ingenloff K, Lira-Noriega A, Hensz CM, Myers CE et al. 2013. Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecological Modelling 263: 10-18. https://doi.org/10.1016/j.ecolmodel.2013.04.011 DOI: https://doi.org/10.1016/j.ecolmodel.2013.04.011

Pacheco MA & Escalante AA. 2020. Cophylogenetic Patterns and Speciation in Avian Haemosporidians. In: Santiago-Alarcon D & Marzal A (Eds.) Avian malaria and related parasites in the tropics: Ecology, Evolution and Systematics, Springer International Publishing, Cham, Switzerland, pp. 401-427. https://doi.org/10.1007/978-3-030-51633-8_12 DOI: https://doi.org/10.1007/978-3-030-51633-8_12

Pappalardo P, Morales-Castilla I, Park AW, Huang S, Schmidt JP & Stephens PR. 2020. Comparing methods for mapping global parasite diversity. Global Ecology and Biogeography 29: 182-193. https://doi.org/10.1111/geb.13008 DOI: https://doi.org/10.1111/geb.13008

Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M & Araújo MB. 2011. Ecological niches and geographic distributions (MPB-49). Princeton University Press, New Jersey, USA. https://doi.org/10.23943/princeton/9780691136868.001.0001 DOI: https://doi.org/10.23943/princeton/9780691136868.001.0001

Poulin R. 2011. The many roads to parasitism: a tale of convergence. Advances in Parasitology 74: 1-40. https://doi.org/10.1016/B978-0-12-385897-9.00001-X DOI: https://doi.org/10.1016/B978-0-12-385897-9.00001-X

Poulin R. 2014. Parasite biodiversity revisited: frontiers and constraints. International Journal for Parasitology 44: 581-589. https://doi.org/10.1016/j.ijpara.2014.02.003 DOI: https://doi.org/10.1016/j.ijpara.2014.02.003

Poulin R, Guilhaumon F, Randhawa HS, Luque JL & Mouillot D. 2011. Identifying hotspots of parasite diversity from species-area relationships: host phylogeny versus host ecology. Oikos 120: 740-747. https://doi.org/10.1111/j.1600-0706.2010.19036.x DOI: https://doi.org/10.1111/j.1600-0706.2010.19036.x

Poulsen BO & Krabbe N. 1997. The diversity of cloud forest birds on the eastern and western slopes of the Ecuadorian Andes: a latitudinal and comparative analysis with implications for conservation. Ecography 20: 475-482. https://doi.org/10.1111/j.1600-0587.1997.tb00415.x DOI: https://doi.org/10.1111/j.1600-0587.1997.tb00415.x

Prieto-Torres DA, Rojas-Soto O & Lira-Noriega A. 2020. Ecological Niche Modeling and Other Tools for the Study of Avian Malaria Distribution in the Neotropics: A Short Literature Review. In: Santiago-Alarcon D & Marzal A (Eds.) Avian malaria and related parasites in the tropics: Ecology, Evolution and Systematics, Springer International Publishing, Cham, Switzerland, pp. 251-280. https://doi.org/10.1007/978-3-030-51633-8_7 DOI: https://doi.org/10.1007/978-3-030-51633-8_7

Prieto-Torres DA, Rojas-Soto OR, Bonaccorso E, Santiago-Alarcon D & Navarro-Sigüenza AG. 2019a. Distributional patterns of Neotropical seasonally dry forest birds: a biogeographical regionalization. Cladistics 35: 446-460. https://doi.org/10.1111/cla.12366 DOI: https://doi.org/10.1111/cla.12366

Prieto-Torres DA, Rojas-Soto OR, Santiago-Alarcon D, Bonaccorso E & Navarro-SigüEnza AG. 2019b. Diversity, endemism, species turnover and relationships among avifauna of neotropical seasonally dry forests. Ardeola 66: 257-277. https://doi.org/10.13157/arla.66.2.2019.ra1 DOI: https://doi.org/10.13157/arla.66.2.2019.ra1

Proctor H & Owens I. 2000. Mites and birds: diversity, parasitism and coevolution. Trends in Ecology & Evolution 15: 358-364. https://doi.org/10.1016/S0169-5347(00)01924-8 DOI: https://doi.org/10.1016/S0169-5347(00)01924-8

Rahbek C. 1995. The elevational gradient of species richness: a uniform pattern? Ecography 18: 200-205. https://doi.org/10.1111/j.1600-0587.1995.tb00341.x DOI: https://doi.org/10.1111/j.1600-0587.1995.tb00341.x

Rahbek C. 1997. The relationship among area, elevation, and regional species richness in neotropical birds. The American Naturalist 149: 875-902. https://doi.org/10.1086/286028 DOI: https://doi.org/10.1086/286028

Rahbek C & Graves G. 2001. Multiscale assessment of patterns of avian species richness. Proceedings of the National Academy of Sciences of the USA 98: 4534-4539. https://doi.org/10.1073/pnas.071034898 DOI: https://doi.org/10.1073/pnas.071034898

Ricklefs RE. 2004. A comprehensive framework for global patterns in biodiversity. Ecology Letters 7: 1-15. https://doi.org/10.1046/j.1461-0248.2003.00554.x DOI: https://doi.org/10.1046/j.1461-0248.2003.00554.x

Rohde K. 1992. Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65: 514-527. https://doi.org/10.2307/3545569 DOI: https://doi.org/10.2307/3545569

Roth RR. 1976. Spatial heterogeneity and bird species diversity. Ecology 57: 773-782. https://doi.org/10.2307/1936190 DOI: https://doi.org/10.2307/1936190

Santiago-Alarcon D & Marzal A. 2020. Avian Malaria and Related Parasites in the Tropics: Ecology, Evolution and Systematics. Springer International Publishing, Cham, Switzerland. https://doi.org/10.1007/978-3-030-51633-8 DOI: https://doi.org/10.1007/978-3-030-51633-8

Santiago-Alarcon D, Rodríguez-Ferraro A, Parker PG & Ricklefs RE. 2014. Different meal, same flavor: cospeciation and host switching of haemosporidian parasites in some nonpasserine birds. Parasites & Vectors 7: 1-9. https://doi.org/10.1186/1756-3305-7-286 DOI: https://doi.org/10.1186/1756-3305-7-286

Scordato ES & Kardish MR. 2014. Prevalence and beta diversity in avian malaria communities: host species is a better predictor than geography. Journal of Animal Ecology 83: 1387-1397. https://doi.org/10.1111/1365-2656.12246 DOI: https://doi.org/10.1111/1365-2656.12246

Stephens PR, Altizer S, Smith KF, Alonso Aguirre A, Brown JH, Budischak SA, Byers JE, Dallas TA, Jonathan Davies T, Drake JM et al. 2016. The macroecology of infectious diseases: A new perspective on global-scale drivers of pathogen distributions and impacts. Ecology letters 19: 1159-1171. https://doi.org/10.1111/ele.12644 DOI: https://doi.org/10.1111/ele.12644

Strona G. 2015. Past, present and future of host-parasite coextinctions. International Journal for Parasitology: Parasites and Wildlife 4: 431-441. https://doi.org/10.1016/j.ijppaw.2015.08.007 DOI: https://doi.org/10.1016/j.ijppaw.2015.08.007

Terborgh J. 1971. Distribution on environmental gradients: theory and a preliminary interpretation of distributional patterns in the avifauna of the Cordillera Vilcabamba, Peru. Ecology 52: 23-40. https://doi.org/10.2307/1934735 DOI: https://doi.org/10.2307/1934735

Terborgh J. 1985. The role of ecotones in the distribution of Andean birds. Ecology 66: 1237-1246. https://doi.org/10.2307/1939177 DOI: https://doi.org/10.2307/1939177

Terborgh J & Weske JS. 1975. The role of competition in the distribution of Andean birds. Ecology 56: 562-576. https://doi.org/10.2307/1935491 DOI: https://doi.org/10.2307/1935491

Vuilleumier F. 1970. Insular biogeography in continental regions. I. The northern Andes of South America. The American Naturalist: 373-388. https://doi.org/10.1086/282671 DOI: https://doi.org/10.1086/282671

Wood CL, Summerside M & Johnson PT. 2020. How host diversity and abundance affect parasite infections: Results from a whole-ecosystem manipulation of bird activity. Biological Conservation 248: 108683. https://doi.org/10.1016/j.biocon.2020.108683 DOI: https://doi.org/10.1016/j.biocon.2020.108683

Wright DH. 1993. Energy supply and patterns of species richness on local and regional scales. In: Ricklefs R & Santiago-Alarcon D (Eds.) Species diversity in ecological communities: historical and geographical perspectives, University of Chicago Press, Chicago, USA, pp. 66-74

Descargas

Publicado

31-05-2021

Número

Sección

Revisiones y metanálisis

Cómo citar

Descubriendo la biodiversidad de parásitos en los Trópicos: Un marco de referencia basado en modelos de nicho ecológico de múltiples especies hospedadoras. (2021). Ecotropicos, 33. https://doi.org/10.53157/ecotropicos.33e0016

Datos de los fondos

Artículos más leídos del mismo autor/a

1 2 3 4 5 6 > >> 

Artículos similares

También puede Iniciar una búsqueda de similitud avanzada para este artículo.