Modeling spatial patterns of plant distribution as a consequence of hydrological dynamic processes in a Venezuelan flooding savanna

Autores/as

  • Eulogio Chacón Universidad de Los Andes image/svg+xml Autor/a https://orcid.org/0000-0002-5837-5505
    • Julia Smith Wageningen University & Research image/svg+xml Autor/a
      • Andrew K. Skidmore International Institute for Geo-Information Science and Earth Observation Autor/a
        • Hebert H. T. Prins Wageningen University & Research image/svg+xml Autor/a
          • Albert G. Toxopeus International Institute for Geo-Information Science and Earth Observation Autor/a

            Palabras clave:

            Digital elevation model (DEM), Embankment, Geographical Information System (GIS), Savanna ecosystems, Vegetation environment relationship

            Resumen

            This study presents the main results of the analysis and integration of ecological ordination and spatially explicit relationships into an ecological-spatial model. This allows understanding, evaluating and predicting the distribution of dominant plant species in a changing flooding savanna landscape affected by embankments in the plains of the Orinoco river (Llanos del Orinoco), Venezuela. An ecological analysis of the relationship between plant species and environmental factors (relative altitude and soil water content), and species response using Gaussian logistic models was carried out. These ecological responses are integrated into a spatial model using a Digital Elevation Model (DEM) providing elevation as a spatial variable. Plant distributions of the dominant species were mapped based on the ecological knowledge generated from the Gaussian responses and DEM. Plant species community composition gradually changes with flooding conditions and the dominant species have a strong relation to subtle soil water content variations. Leersia hexandra and Panicum laxum are the main dominant species, and present a complementary relation without niche overlapping, whereas Eleocharis intersticnta and Paspalum chaffanjonii are dominant in small areas with medium-low frequency and cover values. The model allows prediction of changes in savanna species diversity as a result of modified flooding regimes within the landscape.

            Descargas

            Los datos de descarga aún no están disponibles.

            Referencias

            ABER, J., R.P. NEILSON, S. MCNULTY, J.M. LENIHAN, D. BACHELET and R. J. DRAPEK. 2001. Forest Processes and Global Environmental Change: Predicting the Effects of Individual and Multiple Stressors. BioScience 51(9): 735-751. https://doi.org/10.1641/0006-3568(2001)051[0735:FPAGEC]2.0.CO;2

            ATKINSON, S. 1985. Habitat-based methods for biological impact assessment. The Environmental Professional 7: 265-282.

            AUSTIN, M.P., NICHOLLS, A.O., DOHERTY, M.D. and MEYERS, J.A. 1994. Determining species response functions to an environmental gradient by means of a â-function. Journal of Vegetation Science 5: 215-228. https://doi.org/10.2307/3236154

            BACHELET, D., NEILSON, R.P., LENIHAN, J.M. and DRAPEK, R.J. 2001. Climate Change Effects on Vegetation Distribution and Carbon Budget in the United States. Ecosystems 4: 164-185. https://doi.org/10.1007/s10021-001-0002-7

            CASTROVIEJO, S. and LÓPEZ, G. 1985. Estudio y descripción de las comunidades vegetales del Hato El Frío, los Llanos de Venezuela. Memoria de la Sociedad de Ciencias Naturales La Salle 45(124): 79-151. CHACÓN-MORENO, E. 2001. Landscape change by embankment of the "Llanos del Orinoco" flooded savanna. A Land Unit approach. Pp. 49-68, in D. van der Zee and I. Zonneveld (Eds.): Landscape ecology applied in land evaluation for development and conservation. Some worldwide selected examples. IALE - ITC, The Netherlands.

            CHACÓN-MORENO, E. 2004. Mapping savanna ecosystems of the Llanos del Orinoco using multitemporal NOAA satellite imagery. International Journal of Applied Earth Observations and Geoinformation 5(1): 41-53. https://doi.org/10.1016/j.jag.2003.08.003

            CHACÓN-MORENO, E. 2007. Ecological and spatial modeling. Mapping ecosystems, landscape changes, and plant species distribution in the Llanos del Orinoco. Ph D Thesis, Wageningen University, Wageningen, The Netherlands.

            CHACÓN-MORENO, E., NARANJO, M.E. and ACEVEDO, D. 2004. Direct and indirect vegetation- environment relationship in the flooded savanna, Venezuela. Ecotropicos 17(1-2):25-37.

            CONGALTON, R.G. 1991. A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data. Remote Sensing Environment 37: 35-46. https://doi.org/10.1016/0034-4257(91)90048-B

            CONGALTON, R.G., ODERWALD, R.G. and MEAD, R.A. 1983. Assessing Landsat Classification Accuracy Using Discrete Multivariate Analysis Statistical Techniques. Photogrammetric Engineering and Remote Sensing 49(12): 1671-1678.

            CORSI, F., DE LEEUW, J. and SKIDMORE, A.K. 2000. Modeling species distribution with GIS. Pp. 389-434, in L. Boitani and F. T.K. (Ed.): Research techniques in animal ecology : controversies and consequences, .

            CROSBY, M. 1994. Mapping the distribution of restricted- range birds to identify global conservation priorities. Pp 145-154, in R. Miller (Ed.): Mapping the Diversity of Nature. Chapman & Hall, London. https://doi.org/10.1007/978-94-011-0719-8_9

            DETTMERS, R. and BART, J. 1999. A GIS modeling method applied to predicting forest songbird habitat. Ecological Applications 9: 152-163. https://doi.org/10.1890/1051-0761(1999)009[0152:AGMMAT]2.0.CO;2

            FORTIN, M.-J. 1999. Spatial Statistics in Landscape Ecology. Pp 253-279, in J.M. Klopatek and R.H. Gardner (Ed.): Landscape Ecological Analysis. Issues and Applications. Springer, New York. https://doi.org/10.1007/978-1-4612-0529-6_12

            GOODCHILD, M.F. 1994. Integrating GIS and remote sensing for vegetation analysis and modeling: methodological issues. Journal of Vegetation Science 5: 615-626. https://doi.org/10.2307/3235878

            GUISAN, A., THEURILLAT, J.-P. and KIENAST, F. 1998. Predicting the potential distribution of plant species in an alpine environment. Journal of Vegetation Science 9: 65-74. https://doi.org/10.2307/3237224

            GUISAN, A. and ZIMMERMANN, N.E. 2000. Predictive habitat distribution models in ecology. Ecological Modelling 135: 147-186. https://doi.org/10.1016/S0304-3800(00)00354-9

            HANSEN, A.J., R. P. NEILSON, V. H. DALE, C. FLATHER, L. IVERSON, D. J. CURRIE, S. SHAFER, R. L. COOK and P. BARTLEIN. 2001. Global change in forests: responses of species, communities, and biomes. BioScience 51(9): 765-779. https://doi.org/10.1641/0006-3568(2001)051[0765:GCIFRO]2.0.CO;2

            JANSSEN, L.F. and VAN DEL WEL, F.J.M. 1994. Accuracy Assessment of Satellite Derived Land-Cover Data: A Review. Photogrammetric Engineering and Remote Sensing 60(4): 419-426.

            JONGMAN, R.H.G., TER BRAAK, C.J.F. and VAN TONGEREN, O.F.R. (Ed.). 1995. Data analysis in community and landscape ecology. Cambridge University Press, Cambridge, Great Britain. https://doi.org/10.1017/CBO9780511525575

            LÓPEZ-HERNÁNDEZ, D. and OJEDA, A. 1996. Alternativas en el manejo agroecológico de los suelos de las sabanas del Norte de Suramérica. Ecotropicos 9(2): 101-117.

            MALCOLM, J.R., MARKHAM, A., NEILSON, R.P. and GARACI, M. 2002. Estimated migration rates under scenarios of global climate change. Journal of Biogeography 29: 835-849. https://doi.org/10.1046/j.1365-2699.2002.00702.x

            MAURO, R. 1999. Análisis ecológico de la distribución espacial de animales en los llanos del estado Apure. Doctoral Thesis, Universidad de Los Andes, Mérida, Venezuela.

            NEILSON, R.P. 1995. A Model for Predicting Continental- Scale Vegetation distribution and Water Balance. Ecological Applications 5(2): 362-385. https://doi.org/10.2307/1942028

            NEILSON, R.P. and DRAPEK, R.J. 1998. Potentially complex biosphere responses to transient global warming. Global Change Biology 4: 505-521. https://doi.org/10.1046/j.1365-2486.1998.t01-1-00202.x

            NEILSON, R.P. and MARKS, D. 1994. A global perspective of regional vegetation and hydrologic sensitivities from climatic change. Journal of Vegetation Science 5: 715-730. https://doi.org/10.2307/3235885

            PEREIRA DA SILVA, M. and SARMIENTO, G. 1997. Modelo de estados y transiciones de la sabana hiperestacional de los Llanos venezolanos. Ecotropicos 10(2): 79-86.

            PINILLOS, M. 1999. Modelo hidrológico de simulación en los llanos inundables del estado Apure. Tesis de Maestría, Universidad de Los Andes, Mérida, Venezuela.

            SARMIENTO, G. 1984. The Neotropical Savannas. Harvard University Press, Cambridge.

            SARMIENTO, G. (Ed.). 1990. Las sabanas americanas. Aspecto de su biogeografía, ecología y utilización. Fondo Editorial Acta Científica Venezolana, Caracas.

            SARMIENTO, G. and MONASTERIO, M. 1975. A critical consideration of the environmental conditions associated with the ocurrence of Savanna Ecosystems in Tropical America. Pp. 223-250, in F. Golley and E. Medina (Ed.): Tropical Ecological Systems. Springer- Verlag, New York, https://doi.org/10.1007/978-3-642-88533-4_16

            SARMIENTO, G. and PINILLOS, M. 2001. Patterns and processes in a seasonally flooded tropical plain: Apure Llanos, Venezuela. Journal of Biogeography 28: 985-996. https://doi.org/10.1046/j.1365-2699.2001.00601.x

            SARMIENTO, G., PINILLOS, M., PEREIRA DA SILVA, M. and ACEVEDO, D. 2004. Effects of soil water regime and grazing on vegetation diversity and production in a hyperseasonal savanna in the Apure Llanos, Venezuela. Journal of Tropical Ecology 20: 1-12. https://doi.org/10.1017/S0266467403001299

            SKIDMORE, A.K. 1989. An expert system classifies eucalypt forest types using Thematic Mapper data and digital terrain model. Photogrammetric Engineering and Remote Sensing 55: 1449-1464.

            SKIDMORE, A.K. and GAULD, A. 1996. Classification of kangaroo habitat distribution using three GIS models. International Journal of Remote Sensing 10: 441-454. https://doi.org/10.1080/02693799608902089

            SKIDMORE, A.K., WATFORD, F., LUCKANANURUG, P. and RYAN, P.J. 1996. An Operational GIS Expert System for Mapping Forest Soils. Photogrammetric Engineering & Remote Sensing 62(5): 501-511.

            SMILAUER, P. 1992. CanoDraw User's Guide. Microcomputer Power, USA.

            SMITH, J.K.; CHACÓN-MORENO, E.; JONGMAN R.H.G.; WENTING, PH. and LOEDEMAN, J.H. 2006. Effect of dike construction on water dynamics in the flooding savannahs of Venezuela. Earth Surface Processes and Landforms 31: 81-96. https://doi.org/10.1002/esp.1235

            TAMISIER, A. and DEHORTER, O. 2000. Fauna of the Llanos and Pantanal. Ecological basis for the sustainable management of tropical flooded ecosystems. Case studies in the Llanos (Venezuela) and the Pantanal (Brazil), INCO-DC ERBICI18CT960087, Brussels.

            TER BRAAK, C.J.F. 1995. Ordination. Data analysis in community and landscape ecology. Cambridge University Press, Cambridge, Great Britain. https://doi.org/10.1017/CBO9780511525575.007

            TER BRAAK, C.J.F. 1996. Unimodal models to relate species to environment. General introduction. DLO- Agricultural Mathematics Group, Wageningen, The Netherlands.

            TER BRAAK, C.J.F. and LOOMAN, C.W.N. 1995. Regression. Data analysis in community and landscape ecology. Cambridge University Press, Cambridge, Great Britain. https://doi.org/10.1017/CBO9780511525575.005

            TER BRAAK, C.J.F. and PRENTICE, I.C. 1988. A theory of gradient analysis. Advances in Ecological Research 18: 171-317. https://doi.org/10.1016/S0065-2504(08)60183-X

            TER BRAAK, C.J.F. and SMILAUER, P. 1998. CANOCO Reference Manual and User's Guide to Canoco for Windows: Software for Canonical Community Ordination. Microcomputer Power, USA.

            TOXOPEUS, A.G. 1996. ISM-An Interactive Spatial and temporal Modelling System as a tool in ecosystem management. ITC Publication Number 44, Enschede.

            TURNER, M.G., GARDNER, R.H. and O'NEILL, R.V. 2001. Landscape Ecology in Theory and Practice: Pattern and Process. Springer-Verlag, New York.

            VAN DE RIJT, C.W.C.J., HAZELHOFF, L. and BLOM, C.W.P.M. 1996. Vegetation zonation in a former tidal area: A vegetation-type response model based on DCA and logistic regresiion using GIS. Journal of Vegetation Science 7: 505-518. https://doi.org/10.2307/3236299

            VAN HORSSEN, P.W., SCHOT, P.P. and BARENDREGT, A. 1999. A GIS-based plant prediction model for wetland ecosystems. Landscape Ecology 14: 253-265. https://doi.org/10.1023/A:1008058413152

            VAREKAMP, C., SKIDMORE, A.K. and BURROUGH, P.A. 1996. Using public domain geostatistical and GIS software for spatial interpolation. Photogrammetric Engineering and Remote Sensing 62(7): 845-854.

            ZIMMERMANN, N.E. and KIENAST, F. 1999. Predictive mapping of alpine grasslands in Switzerland: species versus community approach. Journal of Vegetation Science 10: 469-482. https://doi.org/10.2307/3237182

            Descargas

            Publicado

            31-12-2007

            Número

            Sección

            Artículos de investigación

            Cómo citar

            Modeling spatial patterns of plant distribution as a consequence of hydrological dynamic processes in a Venezuelan flooding savanna. (2007). Ecotropicos, 20(2), 55-73. https://ecotropicos.svecologia.org/index.php/home/article/view/87

            Plaudit

            Artículos más leídos del mismo autor/a

            1 2 3 4 5 6 7 8 9 10 > >> 

            Artículos similares

            1-10 de 40

            También puede Iniciar una búsqueda de similitud avanzada para este artículo.