Cambios climáticos y pulsos de especiación en un continente semi-inundado: atacando el misterio de la alta diversidad de Sur América
DOI:
https://doi.org/10.53157/ecotropicos.32e0014Palabras clave:
Biodiversity, Speciation, Paleo-ecology, Amazon, Macroevolution, Marine incursionResumen
Entender el origen de la diversidad biológica de Sur América es especialmente importante hoy, en vista a nuestras crisis de extinción mundial de cara al cambio climático. Aunque ha habido mucho debate sobre el origen de la alta diversidad de Sur América, no hay consenso sobre un proceso general que afecta todo el continente y variedad de taxa. En esta contribución, presento un modelo teórico considerando el impacto del tectonismo e hidrología en la historia del continente. Cuando los Andes se levantaron, represó el rio Paleo-Amazonas, que corría hacia el oeste. Esto produjo una inundación generalizada en todo el continente en donde los bosques estaban en las áreas más elevadas rodeados de hábitats inundados. Debido al relieve plano de la hoya Amazónica, pequeños cambios en el nivel de agua hubieran resultado en expansión y contracción de bosques, produciendo pulsos de especiación. En este estudio analizo datos de la literatura en distribución de especies, y de la edad de nuevos linajes usando estudios moleculares. Muestro que los procesos de especiación en tiempo y espacio corresponden con las predicción es del modelo en el continente. Este modelo también postula que no hubo incursiones marinas en Sur America y que las condiciones marinas que se han encontrado en la historia del continente se hubieran desarrollado in situ.
Descargas
Referencias
Albert JS, Petry P & Reis RE. 2011. Major biogeographic andphylogenetic patterns. Historical biogeography of Neotropical freshwater fishes1: 21-57. https://doi.org/10.1525/california/9780520268685.003.0002 DOI: https://doi.org/10.1525/california/9780520268685.003.0002
Antonelli A, Zizka A, Carvalho FA, Scharn R, Bacon CD, Sil-vestro D & Condamine FL.2018. Amazonia is the primary source of Neotropical biodiversity.Proceedings of the National Academy of Sciences of the United States of America115: 6034-6039. https://doi.org/10.1073/pnas.1713819115 DOI: https://doi.org/10.1073/pnas.1713819115
Archer AW.2005. Review of Amazonian depositional systems.In:Blum M, Marriot S & Leclair S(Eds.)Fluvial sedimen-tology VII., Blackwell Publishing Ltd, Kingston-upon-Thames,UK, pp. 17-39. https://doi.org/10.1002/9781444304350.ch2 DOI: https://doi.org/10.1002/9781444304350.ch2
Armstrong KE, Stone GN, Nicholls JA, Valderrama Escallón E, Anderberg AA, Smedmark J, Gautier L, Naciri Y, Milne R& Richardson JE.2014. Patterns of diversification amongsttropical regions compared: A case study in Sapotaceae.Fron-tiers in Genetics5: 116-129. https://doi.org/10.3389/fgene.2014.00362 DOI: https://doi.org/10.3389/fgene.2014.00362
Batalha-Filho H, Pessoa RO, Fabre PH, Fjeldså J, IrestedtM, Ericson PG, Silveira LF & Miyaki CY.2014. Phylogeny and historical biogeography of gnateaters (Passeriformes, Conopophagidae) in the South America forests. Molecular Phylogenetics and Evolution79: 422-432. https://doi.org/10.1016/j.ympev.2014.06.025 DOI: https://doi.org/10.1016/j.ympev.2014.06.025
Bicudo TC, Sacek V, de Almeida RP, Bates JM & Ribas CC.2019. Andean tectonics and Mantle Dynamics as a Pervasive Influence on Amazonian ecosystem. Scientific reports9: 1-11. https://doi.org/10.1038/s41598-019-53465-y
Bloom DD & Lovejoy NR. 2011. The Biogeography of Ma-rine Incursions in South America. In:Albert JS & Reis RE (Eds.)Historical Biogeography of Neotropical Freshwater Fishes, University of California Press, Berkley, USA, pp.137-144. https://doi.org/10.1525/california/9780520268685.003.0008 DOI: https://doi.org/10.1525/california/9780520268685.003.0008
Bonaccorso E, Koch I & Peterson AT. 2006. Pleistocene fragmentation of Amazon species' ranges. Diversity and Distributions12: 157-164. https://doi.org/10.1111/j.1366-9516.2005.00212.x DOI: https://doi.org/10.1111/j.1366-9516.2005.00212.x
Boonstra M, Ramos M, Lammertsma E, Antoine PO & Hoorn C. 2015. Marine connections of Amazonia: Evidence from foraminifera and dinoflagellate cysts (early to middle Miocene, Colombia/Peru).Palaeogeography, Palaeoclimatology, Palaeoecology 417: 176-194. https://doi.org/10.1016/j.palaeo.2014.10.032 DOI: https://doi.org/10.1016/j.palaeo.2014.10.032
Brady SG.2003. Evolution of the army ant syndrome: the originand long-term evolutionary stasis of a complex of behavioral and reproductive adaptations.Proceedings of the National Academy of Sciences 100: 6575-6579. https://doi.org/10.1073/pnas.1137809100 DOI: https://doi.org/10.1073/pnas.1137809100
Bush MB.1994. Amazonian Speciation: a necessarily complex model.Journal of Biogeography 21: 5-17. https://doi.org/10.2307/2845600 DOI: https://doi.org/10.2307/2845600
Bush MB & Oliveira PE. 2006. The rise and fall of the Refugial Hypothesis of Amazonian speciation: a paleoecological perspective. Biota Neotropica 6: bn00106012006. https://doi.org/10.1590/S1676-06032006000100002 DOI: https://doi.org/10.1590/S1676-06032006000100002
Cadena E & Jaramillo C.2015. Early to middle Miocene turtles from the northernmost tip of South America: giant testudinids, chelids, and podocnemidids from the Castilletes Formation, Colombia.Ameghiniana 52: 188-203. https://doi.org/10.5710/AMGH.10.11.2014.2835 DOI: https://doi.org/10.5710/AMGH.10.11.2014.2835
Camacho S, Moura D, Connor S, Scott D & Boski T.2015. Ecological zonation of benthic foraminifera in the lower Guadiana Estuary (southeastern Portugal). Marine Micropaleontology114: 1-18. https://doi.org/10.1016/j.marmicro.2014.10.004 DOI: https://doi.org/10.1016/j.marmicro.2014.10.004
Carrillo L, Palacios-Hernández E, Yescas M & Ramírez-Manguilar AM.2009. Spatial and seasonal patterns of salinity in a large and shallow tropical estuary of the Western Caribbean.Estuaries and Coasts 32: 906-916. https://doi.org/10.1007/s12237-009-9196-2 DOI: https://doi.org/10.1007/s12237-009-9196-2
Cheng H, Sinha A, Cruz FW, Wang X, Edwards RL, D'HortaFM, Ribas CC, Vuille M, Stott LD & Auler AS.2013. Climate change patterns in Amazonia and biodiversity.Nature Communications4: 1411. https://doi.org/10.1038/ncomms2415 DOI: https://doi.org/10.1038/ncomms2415
Claramunt S & Cracraft J.2015. A new time tree reveals Earth history's imprint on the evolution of modern birds.Science advances1: e1501005. https://doi.org/10.1126/sciadv.1501005 DOI: https://doi.org/10.1126/sciadv.1501005
Colinvaux P & De Oliveira P.2001. Amazon plant diversity and climate through the Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology166: 51-63. https://doi.org/10.1016/S0031-0182(00)00201-7 DOI: https://doi.org/10.1016/S0031-0182(00)00201-7
Colinvaux PA, Oliveira PE & Bush MB.2000. Amazonian and neotropical plant communities on glacial time-scales: The failure of the aridity and refuge hypotheses. Quaternary Science Reviews19: 141-169. https://doi.org/10.1016/S0277-3791(99)00059-1 DOI: https://doi.org/10.1016/S0277-3791(99)00059-1
Colston TJ, Grazziotin FG, Shepard DB, Vitt LJ, Colli GR,Henderson RW, Hedges SB, Bonatto S, Zaher H, Noonan BPet al. 2013. Molecular systematics and historical biogeography of tree boas (Corallusspp.). Molecular Phylogenetics and Evolution 66: 953-959 https://doi.org/10.1016/j.ympev.2012.11.027 DOI: https://doi.org/10.1016/j.ympev.2012.11.027
Cordeiro-Bicudo T, Sacek V, de Almeida RP, Bates JM &Ribas CC.2019. Andean tectonics and Mantle Dynamics as a Pervasive Influence on Amazonian ecosystem.Scientific Reports 9: 1-11. https://doi.org/10.1038/s41598-019-53465-y DOI: https://doi.org/10.1038/s41598-019-53465-y
Crouch NM, Capurucho JM, Hackett SJ & Bates JM. 2019. Evaluating the contribution of dispersal to community structure in Neotropical passerine birds. Ecography42: 390-399. https://doi.org/10.1111/ecog.03927 DOI: https://doi.org/10.1111/ecog.03927
Daly DC & Mitchell JD.2000. Lowland vegetation of tropical South America-an overview. In: Lentz D(Ed.) Imperfect balance: landscape transformations in the pre-Columbian Americas, Columbia University Press, New York, USA, pp. 391-454. https://doi.org/10.7312/lent11156-017 DOI: https://doi.org/10.7312/lent11156-017
De Aguiar MA, Baranger M, Baptestini EM, Kaufman L &Bar-Yam Y. 2009. Global patterns of speciation and diversity. Nature 460: 384-387. https://doi.org/10.1038/nature08168 DOI: https://doi.org/10.1038/nature08168
de Carvalho MR & McEachran JD.2003. Family Carcharhinidae (requiem sharks) . In: Reis RE, Kullander SO& Ferraris CJ(Eds.) Check List of the Freshwater Fishes of South and Central America, Edipucrs, Porto Alegre, Brazil, pp.13-16.
Duellman WE.1982. Quaternary climatic-ecological fluctuations in the lowland tropics: frogs and forests. In:Prance GT(Ed.)Biological Diversification in the Tropics, Columbia University Press, New York, USA, pp. 389-402.
Díaz de Gamero MLD.1996. The changing course of the Orinoco River during the Neogene: a review. Palaeogeography, Palaeo-climatology, Palaeoecology123: 385-402. https://doi.org/10.1016/0031-0182(96)00115-0 DOI: https://doi.org/10.1016/0031-0182(96)00115-0
Emmons LH & Gentry AH.1983. Tropical forest structure and the distribution of gliding and prehensile-tailed vertebrates.The American Naturalist 121: 513-524. https://doi.org/10.1086/284079 DOI: https://doi.org/10.1086/284079
Erwin T & Adis J.1982. Amazonian inundation forest: their role as short term refuges and generators of species richness and taxon pulses. In:Prance GT(Ed.)Biological Diversification in the Tropics, Columbia University Press, New York, USA, pp.358-371.
Ferreira LV, de Almeida SS, Parolin Pet al.2010. Amazonian white-and blackwater floodplain forests in Brazil: large differences on a small scale. Ecotropica 16: 31-41.
Fine PA, Daly DC & Cameron KM.2005. The contribution of edaphic heterogeneity to the evolution and diversity of burseracear trees in the western Amazon. Evolution 59: 1464-1478. https://doi.org/10.1111/j.0014-3820.2005.tb01796.x DOI: https://doi.org/10.1111/j.0014-3820.2005.tb01796.x
FjeldsåJ.1994. Geographical patterns for relict and young species of birds in Africa and South America and implications for conservation priorities .Biodiversity and Conservation 3: 207-226. https://doi.org/10.1007/BF00055939 DOI: https://doi.org/10.1007/BF00055939
Furquim SAC, Graham RC, Neto JPQ & Vidal-Torrado P. 2010. Soil mineral genesis and distribution in a saline lake landscape of the Pantanal Wetland, Brazil. Geoderma154:518-528. https://doi.org/10.1016/j.geoderma.2009.03.014 DOI: https://doi.org/10.1016/j.geoderma.2009.03.014
Garzione CN, Hoke GD, Libarkin JC, Withers S, MacFaddenB, Eiler J, Ghosh P & Mulch A. 2008. Rise of the Andes. Science320: 1304-1307. https://doi.org/10.1126/science.1148615 DOI: https://doi.org/10.1126/science.1148615
Gregory-Wodzicki KM.2000. Uplift history of the Central and Northern Andes: a review. Geological Society of America Bulletin112: 1091-1105. https://doi.org/10.1130/0016-7606(2000)112<1091:UHOTCA>2.3.CO;2 DOI: https://doi.org/10.1130/0016-7606(2000)112<1091:UHOTCA>2.3.CO;2
Guedes TB, Sawaya RJ, Zizka A, Laffan S, Faurby S, Pyron RA, Bernils RS, Jansen M, Passos P, Prudente AL et al. 2018. Patterns, biases and prospects in the distribution and diversity of Neotropical snakes. Global Ecology and Biogeography 27:14-21. https://doi.org/10.1111/geb.12679 DOI: https://doi.org/10.1111/geb.12679
Haffer J.1969. Speciation in Amazonian forest birds.Science 131: 131-137. https://doi.org/10.1126/science.165.3889.131 DOI: https://doi.org/10.1126/science.165.3889.131
Haffer J.1982. General aspects of the refuge theory. In: Prance GT(Ed.)Biological diversification in the tropics, Columbia University Press, New York, USA, pp. 6-24.
Haffer J.1992. On the "river effect" in some forest birds of southern Amazonia. Boletin del Museum Para Emilio Goeldi serie Zoologica 8: 217-245.
Haffer J.2008. Hypotheses to explain the origin of species in Amazonia. Brazilian Journal of Biology 68: 917-947. https://doi.org/10.1590/S1519-69842008000500003 DOI: https://doi.org/10.1590/S1519-69842008000500003
Haffer J & Prance GT. 2001. Climatic forcing of evolution in Amazonia during the Cenozoic: On the refuge theory of biotic differentiation. Amazoniana16: 579-607.
Hansen J, Sato M, Russell G & Kharecha P. 2013. Climate sensitivity, sea level and atmospheric carbon dioxide. Philosophical Transactions of the Royal Society A: Mathematical,Physical and Engineering Sciences 371: 20120294. https://doi.org/10.1098/rsta.2012.0294 DOI: https://doi.org/10.1098/rsta.2012.0294
Hayes F & Sewlal JA.2004. The Amazon River as a dispersal barrier to passerine birds : effects of river width, habitat and taxonomy. Journal of Biogeography31: 1809-1818. https://doi.org/10.1111/j.1365-2699.2004.01139.x DOI: https://doi.org/10.1111/j.1365-2699.2004.01139.x
Head JJ, Bloch JI, Hastings AK, Bourque JR, Cadena EA,Herrera FA, Polly PD & Jaramillo CA.2009. Giant boidsnake from the Palaeocene neotropics reveals hotter past equatorial temperatures. Nature457: 715-717. https://doi.org/10.1038/nature07671 DOI: https://doi.org/10.1038/nature07671
Honorio Coronado EN, Dexter KG, Pennington RT, Chave J,Lewis SL, Alexiades MN, Alvarez E, Alves de Oliveira A,Amaral IL, Araujo-Murakami A et al. 2015. Phylogenetic diversity of Amazonian tree communities. Diversity and Distributions 21: 1295-1307. https://doi.org/10.1111/ddi.12357 DOI: https://doi.org/10.1111/ddi.12357
Hoorn C.2006. Mangrove forests and marine incursions in Neogene Amazonia (lower Apaporis River, Colombia).Palaios 21:197-209. https://doi.org/10.2110/palo.2005.p05-131 DOI: https://doi.org/10.2110/palo.2005.p05-131
Hoorn C, Bogotá-A GR, Romero-Baez M, Lammertsma EI,Flantua SG, Dantas EL, Dino R, do Carmo DA &Chemale Jr F. 2017. The Amazon at sea: Onset and stages of the Amazon River from a marine record, with special reference to Neogene plant turnover in the drainage basin.Global and Planetary Change153: 51-65. https://doi.org/10.1016/j.gloplacha.2017.02.005 DOI: https://doi.org/10.1016/j.gloplacha.2017.02.005
Hoorn C, Guerrero J, Sarmiento GA & Lorente MA.1995. Andean tectonics as a cause for changing drainage patterns in Miocene northern South America.Geology 23: 237-240. https://doi.org/10.1130/0091-7613(1995)023<0237:ATAACF>2.3.CO;2 DOI: https://doi.org/10.1130/0091-7613(1995)023<0237:ATAACF>2.3.CO;2
Hoorn C, Wesselingh F, Ter Steege H, Bermudez M, Mora A,Sevink J, Sanmartín I, Sanchez-Meseguer A, Anderson C,Figueiredo Jet al.2010a. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity.Science330: 927-931. https://doi.org/10.1126/science.1194585 DOI: https://doi.org/10.1126/science.1194585
Hoorn C, Wesselingh FP, Hovikoski J, Guerrero Jet al.2010b.The development of the amazonian mega-wetland (Miocene;Brazil, Colombia, Peru, Bolivia). In:Hoorn C & Wesselingh F (Eds.)Amazonia, landscape and species evolution: a look into the past, Hoboken: Blackwell-Wiley, West Sussex, UK,pp. 123-142. https://doi.org/10.1002/9781444306408.ch8 DOI: https://doi.org/10.1002/9781444306408.ch8
Hovikoski J, Wesselingh FP, Räsänen M, Gingras M & Vonhof HB. 2010. Marine influence in Amazonia: evidence from the geological record. In:Hoorn C & Wesselingh F(Eds.) Amazonia, landscape and species evolution: a look into the past, Hoboken: Blackwell-Wiley, West Sussex, UK, pp. 143-161. https://doi.org/10.1002/9781444306408.ch9 DOI: https://doi.org/10.1002/9781444306408.ch9
Hubbell SP. 2001.The unified neutral theory of biodiversity and biogeography (MPB-32). Princeton University Press, New Jersey, USA.
Hubert N & Renno JF.2006. Historical biogeography of South American freshwater fishes.Journal of Biogeography33:1414-1436. https://doi.org/10.1111/j.1365-2699.2006.01518.x DOI: https://doi.org/10.1111/j.1365-2699.2006.01518.x
Humboldt AV. 1850. Views of Nature or the contemplation on the sublime phenomena of creation. Harrison and Sons, London. https://doi.org/10.5962/bhl.title.155802 DOI: https://doi.org/10.5962/bhl.title.155802
IBM Corp.2011. IBM SPSS Statistics for Windows.
Irestedt M, Fjeldså J, Dalén L & Ericson PG.2009. Convergent evolution, habitat shifts and variable diversification rates in the oven bird-woodcreeper family (Furnariidae). BMC evolutionary biology 9: 268. https://doi.org/10.1186/1471-2148-9-268 DOI: https://doi.org/10.1186/1471-2148-9-268
IUCN. 2017. The IUCN red list of threatened species. Disponible en: https://www.iucnredlist.org/. (Consultado el 22 de Mayo de 2020).
Jackson ND & Austin CC.2010. The combined effects of rivers and refugia generate extreme cryptic fragmentation within the common ground skink (Scincella lateralis).Evolution: International Journal of Organic Evolution64: 409-428. https://doi.org/10.1111/j.1558-5646.2009.00840.x DOI: https://doi.org/10.1111/j.1558-5646.2009.00840.x
Janzen D.1976. Why are there so many species of insects? In:Whit D(Ed.)Proceedings of the XV International Congress of Entomology, The Entomological Society of America, Washington D.C, USA, pp. 84-94.
Jaramillo C, Romero I, D'Apolito C, Bayona G, Duarte E,Louwye S, Escobar J, Luque J, Carrillo-Briceño JD, Zapata Vet al.2017. Miocene flooding events of western Amazonia. Science Advances3: e1601693. https://doi.org/10.1126/sciadv.1601693 DOI: https://doi.org/10.1126/sciadv.1601693
Kathiresan K & Bingham BL.2001. Biology of mangroves and mangrove ecosystems.Advances in Marine Biology 40: 84-254. https://doi.org/10.1016/S0065-2881(01)40003-4 DOI: https://doi.org/10.1016/S0065-2881(01)40003-4
Langston JW.1965. Fossil crocodilians from Colombia and the Cenozoic history of the Crocodilia in South America.University of California Publications in Geological Sciences 52:1-157. https://doi.org/10.2307/1440820 DOI: https://doi.org/10.2307/1440820
Latimer AW, Silander JA & Cowling RM.2001. Neutral ecological theory reveals isolation and rapid speciation in a biodiversity hotspot. Science309: 1722-1725. https://doi.org/10.1126/science.1115576 DOI: https://doi.org/10.1126/science.1115576
Latrubesse EM, Cozzuol M, da Silva-Caminha SA, Rigsby CA,Absy ML & Jaramillo C.2010. The Late Miocene paleogeography of the Amazon Basin and the evolution of the Amazon River system. Earth-Science Reviews 99: 99-124. https://doi.org/10.1016/j.earscirev.2010.02.005 DOI: https://doi.org/10.1016/j.earscirev.2010.02.005
Leigh Jr EG, Davidar P, Dick CW, Terborgh J, Puyravaud JP, ter Steege H & Wright SJ. 2004. Why do tropical forest have so many species of trees? Biotropica36: 447-473. https://doi.org/10.1111/j.1744-7429.2004.tb00342.x DOI: https://doi.org/10.1111/j.1744-7429.2004.tb00342.x
Leite YL, Costa LP, Loss AC, Rocha RG, Batalha-Filho H, Bas-tos AC, Quaresma VS, Fagundes V, Paresque R, Passamani Met al.2016. Neotropical forest expansion during the last glacial period challenges refuge hypothesis. Proceedings of the National Academy of Sciences 113: 1008-1013. https://doi.org/10.1073/pnas.1513062113 DOI: https://doi.org/10.1073/pnas.1513062113
Lim BK.2007. Divergence times and origin of neotropical sheath-tailed bats (Tribe Diclidurini) in South America. Molecular Phylogenetics and Evolution 45: 777-791. https://doi.org/10.1016/j.ympev.2007.09.003 DOI: https://doi.org/10.1016/j.ympev.2007.09.003
Lima MG, Buckner JC, Silva-Júnior JdSe, Aleixo A, MartinsAB, Boubli JP, Link A, Farias IP, da Silva MN, Röhe Fet al.2017. Capuchin monkey biogeography: understanding Sapajus Pleistocene range expansion and the current sympatry between Cebus and Sapajus. Journal of Biogeography 44: 810-820. https://doi.org/10.1111/jbi.12945 DOI: https://doi.org/10.1111/jbi.12945
Lima SFB, Lucena RA, Santos GM, Souza JW, Christoffersen ML, Guimarães CR & Oliveira GS. 2017. Inventory of mollusks from the estuary of the Paraíba River in northeastern Brazil. Biota Neotropica17: e20160239. https://doi.org/10.1590/1676-0611-bn-2016-0239 DOI: https://doi.org/10.1590/1676-0611-bn-2016-0239
Lovejoy NR.1998. Marine incursion into South America. Nature396: 421-422. https://doi.org/10.1038/24757 DOI: https://doi.org/10.1038/24757
Lovejoy NR & Albert JS.2006. Miocene marine incursions and marine/freshwater transitions: Evidence from Neotropical fishes.Journal of South American Earth Sciences 21: 5-13. https://doi.org/10.1016/j.jsames.2005.07.009 DOI: https://doi.org/10.1016/j.jsames.2005.07.009
Lundberg JG & Aguilera O.2003. The Late Miocene Phractocephalus catfish (Siluriformes: Pimelodidae) from Urumaco,Venezuela: additional specimens and reinterpretation as a distinct species. Neotropical Ichtyology1: 97-109. https://doi.org/10.1590/S1679-62252003000200004 DOI: https://doi.org/10.1590/S1679-62252003000200004
Lundberg JG, Marshall LG, GuerreroJ, Horton B, Malabarba MCSL & Wesselingh F.1998. The stage for Neotropical fish diversification: A history of tropical South American rivers.In:Malabarba L, Reis RE, Vari RP, Lucena ZMS & Lucena CAS (Eds.)Phylogeny and Classification of Neotropical Fishes, Edipucrs, Porto Alegre, pp. 13-48.
Mayle FE, Beerling DJ, Gosling WD & Bush MB. 2004. Responses of Amazonian ecosystems to climatic and atmospheric carbon dioxide changes since the last glacial maximum.Philosophical Transactions of the Royal Society B: Biological Sciences359: 499-514. https://doi.org/10.1098/rstb.2003.1434 DOI: https://doi.org/10.1098/rstb.2003.1434
Miller KG, Kominz MA, Browning JV, Wright JD, Mountain GS, Katz ME, Sugarman PJ, Cramer BS, Christie-Blick N& PekarSF. 2005. The Phanerozoic record of global sea-level change.Science310: 1293-1298. https://doi.org/10.1126/science.1116412 DOI: https://doi.org/10.1126/science.1116412
Mittermeier RA, Mittermeier CG, Pilgrim J, Fonseca G &Konstant WR. 2002. The pantanal - Wilderness: Earth's last wild places. In: Mittermeier RA, Mittermeier CG, PilgrimJ, Fonseca G & Konstant WR(Eds.) Wilderness: Earth's last wild places (No. 333.782 W673w), México, MX: CEMEX,Mexico D.F., Mexico, pp. 246-263.
Molino JF & Sabatier D.2001. Tree diversity in tropical rainforests: a validation of the intermediate disturbance hypothesis. Science 294: 1702-1704. https://doi.org/10.1126/science.1060284 DOI: https://doi.org/10.1126/science.1060284
Mora A, Baby P, Roddaz M, Parra M, Brusset S, Hermoza W & Espurt N. 2010. Tectonic history of the Andes and sub-Andean zones: implications for the development of the Amazon drainage basin. In:Hoorn C & Wesselingh F( Eds.) Amazonia, landscape and species evolution: a look into the past, Hoboken: Blackwell-Wiley, West Sussex, UK, pp. 38-60. https://doi.org/10.1002/9781444306408.ch4 DOI: https://doi.org/10.1002/9781444306408.ch4
Moritz C, Patton JL, Schneider CJ & Smith TB.2000. Diversification of rainforest faunas: an integrated molecular approach. Annual Review of Ecology and Systematics31: 533-563. https://doi.org/10.1146/annurev.ecolsys.31.1.533 DOI: https://doi.org/10.1146/annurev.ecolsys.31.1.533
Morlon H.2014. Phylogenetic approaches for studying diversification.Ecology Letters17: 508-525. https://doi.org/10.1111/ele.12251 DOI: https://doi.org/10.1111/ele.12251
Mörner NA et al.2016. Origin of the Amazonian rainforest. International Journal of Geosciences7: 470-478. https://doi.org/10.4236/ijg.2016.74036 DOI: https://doi.org/10.4236/ijg.2016.74036
Naka LN & Brumfield RT.2018. The dual role of Amazonian rivers in the generation and maintenance of avian diversity. Science advances 4: eaar8575. https://doi.org/10.1126/sciadv.aar8575 DOI: https://doi.org/10.1126/sciadv.aar8575
Noonan BP & Chippindale PT. 2006. Dispersal and vicariance: the complex evolutionary history of boid snakes.Molecular Phylogenetics and Evolution40: 347-358. https://doi.org/10.1016/j.ympev.2006.03.010 DOI: https://doi.org/10.1016/j.ympev.2006.03.010
Oberdorff T, Dias MS, Jézéquel C, Albert JS, Arantes CC,Bigorne R, Carvajal-Valleros FM, De Wever A, Frederico RG, Hidalgo Met al. 2019. Unexpected fish diversity gradients in the Amazon basin.Science Advances 5: eaav8681. https://doi.org/10.1126/sciadv.aav8681 DOI: https://doi.org/10.1126/sciadv.aav8681
Parada A, Pardiñas UF, Salazar-Bravo J, D'Elía G & Palma RE. 2013. Dating an impressive Neotropical radiation: molecular time estimates for the Sigmodontinae (Rodentia) provide insights into its historical biogeography. Molecular phylogenetics and Evolution66: 960-968. https://doi.org/10.1016/j.ympev.2012.12.001 DOI: https://doi.org/10.1016/j.ympev.2012.12.001
Pennington T, Prado DE & Pendry CA.2000. Neotropical seasonally dry forests and Quaternary vegetation changes.Journal of Biogeography 27: 261-273. https://doi.org/10.1046/j.1365-2699.2000.00397.x DOI: https://doi.org/10.1046/j.1365-2699.2000.00397.x
Perelman P, Johnson WE, Roos C, Seuánez HN, Horvath JE,Moreira MA, Kessing B, Pontius J, Roelke M, Rumpler Yet al. 2011. A molecular phylogeny of living primates.PLoS Genet 7: e1001342. https://doi.org/10.1371/journal.pgen.1001342 DOI: https://doi.org/10.1371/journal.pgen.1001342
Pianka ER.1977. Latitudinal gradients in species diversity: a review of concepts. The American Naturalist 100: 33-46. https://doi.org/10.1086/282398 DOI: https://doi.org/10.1086/282398
Pires J & Prance G.1985. The vegetation types of the Brazilian Amazon. In: Prance GT & Lovejoy TE(Eds.) Key Environments: Amazonia, Pergamon Press, Oxford, UK, pp. 109-145.
Prance GT.1979. Notes on the vegetation of Amazonia III. The terminology of Amazonian forest types subject to inundation.Brittonia 31: 26-38. https://doi.org/10.2307/2806669 DOI: https://doi.org/10.2307/2806669
Prance GT. 1982. Biological Diversification in the Tropics.Columbia University Press, New York, USA.
Quintero E, Ribas CC & Cracraft J. 2013. The Andean Hapalopsittaca parrots (Psittacidae, Aves): An example of montane-tropical lowland vicariance. Zoologica Scripta 42: 28-43. https://doi.org/10.1111/j.1463-6409.2012.00567.x DOI: https://doi.org/10.1111/j.1463-6409.2012.00567.x
Ribas CC, Aleixo A, Nogueira AC, Miyaki CY & Cracraft J.2012. A palaeobiogeographic model for biotic diversification within Amazonia over the past three million years. Proceedings of the Royal Society B: Biological Sciences279: 681-689. https://doi.org/10.1098/rspb.2011.1120 DOI: https://doi.org/10.1098/rspb.2011.1120
Ribas CC, Miyaki CY & Cracraft J.2009. Phylogenetic relationships, diversification and biogeography in Neotropical Brotogeris parakeets.Journal of Biogeography 36: 1712-1729. https://doi.org/10.1111/j.1365-2699.2009.02131.x DOI: https://doi.org/10.1111/j.1365-2699.2009.02131.x
Ribas CC, Moyle RG, Miyaki CY & Cracraft J.2007. The assembly of montane biotas: linking Andean tectonics and climatic oscillations to independent regimes of diversification in Pionus parrots. Proceedings of the Royal Society B: Biological Sciences 274: 2399-2408. https://doi.org/10.1098/rspb.2007.0613 DOI: https://doi.org/10.1098/rspb.2007.0613
Rivas RA, Mittermeier CG, Pilgrim J, Fonseca G & Konstant WR.2002. The llanos. In: Mittermeier RA, Mittermeier CG, Pilgrim J, Fonseca G & Konstant WR (Eds.) Wilderness: Earth's last wild places (No. 333.782 W673w), México,MX: CEMEX, Mexico D.F., Mexico, pp. 265-273.
Roddaz M, Brusset S, Baby P & Hérail G. 2006. Miocene tidal-influenced sedimentation to continental Pliocene sedimentation in the forebulge-backbulge depozones of the Beni-Mamore foreland Basin (northern Bolivia). Journal of South American Earth Sciences 20: 351-368. https://doi.org/10.1016/j.jsames.2005.11.004 DOI: https://doi.org/10.1016/j.jsames.2005.11.004
Roxburgh SH, Shea K & Wilson JB.2004. The intermediate disturbance hypothesis: patch dynamics and mechanisms of species coexistence. Ecology 85: 359-371. https://doi.org/10.1890/03-0266 DOI: https://doi.org/10.1890/03-0266
Rull V. 2008. Speciation timing and neotropical biodiversity: TheTertiary-Quaternary debate in the light of molecular phylogenetic evidence. Molecular Ecology 17: 2722-2729. https://doi.org/10.1111/j.1365-294X.2008.03789.x DOI: https://doi.org/10.1111/j.1365-294X.2008.03789.x
Rull V.2011. Neotropical biodiversity: timing and potential drivers.Trends in Ecology & Evolution 26: 508-513. https://doi.org/10.1016/j.tree.2011.05.011 DOI: https://doi.org/10.1016/j.tree.2011.05.011
Rull V.2015. Pleistocene speciation is not refuge speciation. Journal of Biogeography 42: 602-604. https://doi.org/10.1111/jbi.12440 DOI: https://doi.org/10.1111/jbi.12440
Salas-Gismondi R, Flynn JJ, Baby P, Tejada-Lara JV, Wesse-lingh FP & Antoine PO. 2015. A Miocene hyperdiverse crocodylian community reveals peculiar trophic dynamics in proto-Amazonian mega-wetlands. Proceedings of the Royal Society B: Biological Sciences 282: 20142490. https://doi.org/10.1098/rspb.2014.2490 DOI: https://doi.org/10.1098/rspb.2014.2490
Santos JC, Coloma LA, Summers K, Caldwell JP, Ree R & Cannatella DC.2009. Amazonian amphibian diversity is primarily derived from Late Miocene Andean lineages.PLoS Biology7: e1000056. https://doi.org/10.1371/journal.pbio.1000056 DOI: https://doi.org/10.1371/journal.pbio.1000056
Sayer EJ, Sutcliffe LM, Ross RI & Tanner EV.2010. Arthropod abundance and diversity in a lowland tropical forest floor in Panama: the role of habitat space vs. nutrient concentrations. Biotropica 42: 194-200. https://doi.org/10.1111/j.1744-7429.2009.00576.x DOI: https://doi.org/10.1111/j.1744-7429.2009.00576.x
Schoener TW. 1971. Large-billed insectivorous birds: a precipitous diversity gradient.The Condor 73: 154-161. https://doi.org/10.2307/1365836 DOI: https://doi.org/10.2307/1365836
Sepulchre P, Sloan LC & Fluteau F. 2010. Modelling the response of Amazonian climate to the uplift of the Andean mountain range. In:Hoorn C & Wesselingh F(Eds.) Amazonia, landscape and species evolution: a look into the past, Hoboken: Blackwell-Wiley, West Sussex, UK, pp. 211-222. https://doi.org/10.1002/9781444306408.ch13 DOI: https://doi.org/10.1002/9781444306408.ch13
Silva GS, Roxo FF, Lujan NK, Tagliacollo VA, Zawadzki CH& Oliveira C.2016. Transcontinental dispersal, ecological opportunity and origins of an adaptive radiation in the Neotropical catfish genus Hypostomus(Siluriformes: Loricariidae). Molecular Ecology 25: 1511-1529. https://doi.org/10.1111/mec.13583 DOI: https://doi.org/10.1111/mec.13583
Strecker M, Alonso R, Bookhagen B, Carrapa B, Hilley G, Sobel E & Trauth M. 2007. Tectonics and climate of the southern central Andes. Annual Review of Earth and Planetary Sciences35: 747-787. https://doi.org/10.1146/annurev.earth.35.031306.140158 DOI: https://doi.org/10.1146/annurev.earth.35.031306.140158
Teeling EC, Springer MS, Madsen O, Bates P, O'Brien SJ &Murphy WJ. 2005. A molecular phylogeny for bats illuminates biogeography and the fossil record. Science307: 580-584. https://doi.org/10.1126/science.1105113 DOI: https://doi.org/10.1126/science.1105113
Terborgh J.1992. Maintenance of diversity in tropical forests. Biotropica 24: 283-292. https://doi.org/10.2307/2388523 DOI: https://doi.org/10.2307/2388523
Terborgh J, Robinson SK, Parker III TA, Munn CA & Pierpont N.1990. Structure and organization of an Amazonian forest bird community. Ecological Monographs 60: 213-238. https://doi.org/10.2307/1943045 DOI: https://doi.org/10.2307/1943045
Terborgh J & Weske JS.1975. The role of competition in the distribution of Andean birds. Ecology 56: 562-576. https://doi.org/10.2307/1935491 DOI: https://doi.org/10.2307/1935491
Thompson AW, Betancur-R R, López-Fernández H & Ortí G.2014. A time-calibrated, multi-locus phylogeny of piranhas and pacus (Characiformes: Serrasalmidae) and a comparison of species tree methods.Molecular Phylogenetics and Evolution 81: 242-257. https://doi.org/10.1016/j.ympev.2014.06.018 DOI: https://doi.org/10.1016/j.ympev.2014.06.018
Valle-Levinson A & Bosley KT. 2003. Reversing circulation patterns in a tropical estuary. Journal of Geophysical Research: Oceans 108: 3331. https://doi.org/10.1029/2003JC001786 DOI: https://doi.org/10.1029/2003JC001786
Voelker G, Marks BD, Kahindo C, A'genonga U, BapeamoniF, Duffie LE, Huntley JW, Mulotwa E, Rosenbaum SA &Light JE. 2013. River barriers and cryptic biodiversity in an evolutionary museum.Ecology and Evolution3: 536-545. https://doi.org/10.1002/ece3.482 DOI: https://doi.org/10.1002/ece3.482
Vonhof H, Wesselingh F, Kaandorp R, Davies G, Van Hinte J, Guerrero J, Rasanen M, Romero-Pittman L & Ranzi A. 2003. Paleogeography of Miocene Western Amazonia: Isotopic composition of molluscan shells constrains the influence of marine incursions.Geological Society of America Bulletin115: 983-993. https://doi.org/10.1130/B25058.1 DOI: https://doi.org/10.1130/B25058.1
Vonhof HB & Kaandorp RJ. 2010. Climate variation in Amazonia during the Neogene and the Quaternary. In: Hoorn C& Wesselingh F(Eds.) Amazonia, landscape and species evolution: a look into the past, Hoboken: Blackwell-Wiley, West Sussex, UK, pp. 201-210. https://doi.org/10.1002/9781444306408.ch12 DOI: https://doi.org/10.1002/9781444306408.ch12
Vonhof HB, Wesselingh FP & Ganssen GM.1998. Reconstruction of the Miocene Western Amazonian aquatic system using molluscan isotopic signatures. Palaeogeography, Palaeoclimatology, Palaeoecology 141: 85-93. https://doi.org/10.1016/S0031-0182(98)00010-8 DOI: https://doi.org/10.1016/S0031-0182(98)00010-8
Ward PS, Brady SG, Fisher BL & Schultz TR.2015. The evolution of myrmicine ants: phylogeny and biogeography of a hyperdiverse ant clade (Hymenoptera: Formicidae). Systematic Entomology 40: 61-81. https://doi.org/10.1111/syen.12090 DOI: https://doi.org/10.1111/syen.12090
WeirJT. 2006. Divergent Timing and Patterns of Species Accumulation in Lowland and Highland Neotropical Birds.Evolution60: 842-855.
https://doi.org/10.1111/j.0014-3820.2006.tb01161.x DOI: https://doi.org/10.1111/j.0014-3820.2006.tb01161.x
Wesselingh F, Anderson L & Kadolsky D.2006. Molluscs from the Miocene Pebas Formation of Peruvian and Colombian Amazonia.Scripta Geologica133: 19-290.
Wesselingh F&Salo J.2006. A Miocene perspective on the evolution of the Amazonian biota. Scripta Geologica133: 439-458.
Wesselingh FP & Hoorn C.2011. Geological development of Amazon and Orinoco basins. In:Albert JS & Reis RE(Eds.) Historical Biogeography of Neotropical Freshwater Fishes, University of California Press, Berkely, Los Angeles, USA, pp.59-67. https://doi.org/10.1525/california/9780520268685.003.0003 DOI: https://doi.org/10.1525/california/9780520268685.003.0003
Zachos J, Pagani M, Sloan L, Thomas E & Billups K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present.Science 292: 686-693. https://doi.org/10.1126/science.1059412 DOI: https://doi.org/10.1126/science.1059412
Zachos JC, Dickens GR & Zeebe RE. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics.Nature451: 279-283 https://doi.org/10.1038/nature06588 DOI: https://doi.org/10.1038/nature06588
Descargas
Archivos adicionales
Publicado
Número
Sección
Licencia
Derechos de autor 2020 Rivas

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.